Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Animal Models

Transplantation of syngenic bone marrow contaminated with NGFr-marked WEHI-3B cells: an improved model of leukemia relapse in mice

Abstract

With the aim of developing a model mimicking the relapse of patients transplanted with leukemia-contaminated grafts, myelomonocytic leukemia WEHI-3B D+ cells were first transduced with a retroviral vector encoding the low-affinity human nerve growth factor receptor (NGFr). Clones with a stable and homogeneous expression of the transgene and with a similar in vitro behavior to the parental cell line were selected for further experiments. The analysis of bone marrow (BM) contaminated with WEHI-3B/NGFr cells revealed a linear correlation (r2 = 0.999) between the actual values of BM contamination and the experimental data determined by flow cytometry. Balb/c mice were myeloablated and transplanted with syngenic BM contaminated with graded numbers of leukemic cells; dose-dependent survival curves were obtained, regardless of whether parental or WEHI-3B/NGFr cells were infused. The leukemia dissemination in recipients transplanted with WEHI-3B/NGFr contaminated grafts was easily determined by means of simple flow cytometry analysis of the NGFr marker. A leukemia dose-dependent increase in the number of PB leukocytes was observed in transplanted recipients at 20 days post-transplantation with no changes in myelomonocytic cells. As deduced from our observations, the transplantation of syngenic BM contaminated with WEHI-3B/NGFr cells constitutes an improved model of autograft-mediated leukemia relapse and a good tool for studies of leukemia cell purging.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gorin NC . Autologous stem cell transplantation in acute myelocytic leukemia Blood 1998 92: 1073–1090

    CAS  PubMed  Google Scholar 

  2. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb H, Rimm AA, Ringdén O, Rozman C, Speck B, Truitt RL, Zwaan FE, Bortin MM . Graft-versus-leukemia reactions after bone marrow transplantation Blood 1990 75: 555–562

    CAS  PubMed  Google Scholar 

  3. Brenner MK, Rill DR, Moen RC, Krance RA, Mirro JRJ, Anderson WF, Ihle JN . Gene-marking to trace origin of relapse after autologous bone-marrow transplantation Lancet 1993 341: 85–86

    Article  CAS  Google Scholar 

  4. Gamba-Vitalo C, Carman MD, Sartorelli AC . Development of neomycin-resistant WEHI-3B D+ murine cells as an in vivo model of acute nonlymphocytic leukemia Exp Hematol 1989 17: 130–137

    CAS  PubMed  Google Scholar 

  5. Smith C, Muench MO, Knizewski M, Gilboa E, Moore MAS . Development of a lacZ marked WEHI-3B D+ murine leukemic cell line as an in vivo model of acute non-lymphocytic leukemia Leukemia 1993 7: 310–317

    CAS  PubMed  Google Scholar 

  6. Hendrikx PJ, Martens ACM, Schultz FW, Visser JWM, Hagenbeek A . Monitoring of leukemia growth in a rat model using a highly sensitive assay for the detection of LacZ marked leukemic cells Leukemia 1995 9: 1954–1960

    CAS  PubMed  Google Scholar 

  7. Yang Y, Martens ACM, de Groot CJ, Hendrikx PJ, Valerio DW, van Bekkum DW, Hagenbeek A . Retrovirus-mediated transfer and expression of marker genes in the BN rat acute myelocytic leukemia model for the study of minimal residual disease (MRD) Leukemia 1993 7: 131–139

    Google Scholar 

  8. Mavilio F, Ferrari G, Rossini S, Nobili N, Bonini C, Casorati G, Traversari C, Bordignon C . Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer Blood 1994 83: 1988–1997

    CAS  PubMed  Google Scholar 

  9. Fehse B, Li Z, Schade UM, Uhde A, Zander AR . Impact of a new generation of gene transfer marker on gene therapy Gene Therapy 1998 5: 429–430

    Article  CAS  Google Scholar 

  10. Machl AW, Planitzer SA, Kubbies M . I-NGFR receptor is a new flow cytometric tool for rapid cell cycle-correlated gene therapy complementation studies in viable cells Cytometry 1997 29: 371–374

    Article  CAS  Google Scholar 

  11. Phillip K, Gentry T, McCowage G, Gilboa E, Smith C . Cell-surface markers for assessing gene transfer into human hematopoietic cells Nature Med 1996 2: 1154–1156

    Article  Google Scholar 

  12. Warner NL, Moore MAS, Metcalf D . A transplantable myelomonocytic leukemia in BALB/c mice: cytology, karyotype, and muramidase content J Natl Cancer Inst 1969 43: 963–982

    CAS  PubMed  Google Scholar 

  13. Muench M, Guy Z, Moore M . Ex vivo differentiation therapy as a method of leukemic cell purging in murine bone marrow expansion cultures Cancer Res 1992 52: 6576–6582

    CAS  PubMed  Google Scholar 

  14. Fuji S, Hamada H, Fujimoto K, Shimomura T, Kawakita M . Activated dendritic cells from bone marrow cells of mice receiving cytokine-expressing tumor cells are associated with the enhanced survival of mice bearing syngeneic tumors Blood 1999 93: 4328–4335

    Google Scholar 

  15. Nakazaki Y, Tani K, Lin Z, Sumimoto H, Hibino H, Tanabe T, Wu M, Izawa K, Hase H, Takahashi S, Tojo A, Azuma M, Hamada H, Mori S, Asano S . Vaccine effect of granulocyte–macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity Gene Therapy 1998 5: 1355–1362

    Article  CAS  Google Scholar 

  16. Cheng L, Du C, Lavau C, Chen S, Tong J, Chen BP, Scollay R, Hawley RG, Hill B . Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and theirlympho-myeloid progeny Blood 1998 92: 83–92

    CAS  PubMed  Google Scholar 

  17. Varas F, Bernad A, Bueren JA . Granulocyte colony-stimulating factor mobilizes into peripheral blood the complete clonal repertoire of hematopoietic precursors residing in the bone marrow of mice Blood 1996 88: 2495–2501

    CAS  PubMed  Google Scholar 

  18. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, Ponzoni M, Rosini S, Mavilio F, Traversari C, Bordignon C . HSV-TK Gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia Science 1997 276: 1719–1724

    Article  CAS  Google Scholar 

  19. Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A . Simplified mammalian DNA isolation procedure Nucleic Acids Res 1991 19: 4293

    Article  CAS  Google Scholar 

  20. Maniatis T, Fritsch EF, Sambrook J (eds) . Molecular Cloning: a Laboratory Manual Cold Spring Harbor Laboratory: New York 1982

    Google Scholar 

  21. Bernad A, Varas F, Gallego JM, Almendral JM, Bueren JA . Ex vivo expansion and selection of retrovirally transduced bone marrow: and efficient methodology for gene-transfer to murine lympho-haemopoietic stem cells Br J Haematol 1994 87: 6–17

    Article  CAS  Google Scholar 

  22. Deisseroth AB, Zu Z, Claxton D, Hanania EG, Fu S, Ellerson D, Goldberg L, Thomas M, Janicek K, Anderson WF . Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML Blood 1994 83: 3068–3076

    CAS  PubMed  Google Scholar 

  23. Robinet E, Certoux JM, Ferrand C, Maples P, Hardwick A, Cahn JY, Reynolds CW, Jacob W, Herve P, Tiberghien P . A closed culture system for the ex vivo transduction and expansion of human T lymphocytes J Hematother 1998 7: 205–215

    Article  CAS  Google Scholar 

  24. Ymer S, Tucker WQ, Sanderson CJ, Hapel AJ, Campbell HD, Young IG . Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene Nature 1985 317: 255–258

    Article  CAS  Google Scholar 

  25. Güenechea G . Radioprotección conferida por polisacáridos iónicos en ratón. Relación con su capacidad para estimular el sistema hematopoyético. PhD Thesis, Universidad Complutense deMadrid, 1995

  26. Fung M, Szeto Y, Leung K, Wong-Leung Y, Mak N . Effects of biochain A on the growth and differentiation of myeloid leukemia WEHI-3B (JCS) cells Life Sci 1997 61: 105–115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs M Grez and H Knoess for providing the packaging cell line producing the LNSN vector. We would like to thank Drs M Ramírez and ML Lamana for discussions and careful reading of the manuscript, and finally S García and ME López for excellent technical collaboration and I Ormán and J Martínez for expert assistance with the flow cytometry and animal studies, respectively. This work was supported by grants of Comisión Interministerial de Ciencia y Tecnología (CICYT, grant SAF 98-0008-C04-01) and Consejería de Educación y Cultura de la Comunidad de Madrid (grant 8.6/19/97). JG-C is a recipient of a fellowship from the CICYT (Plan de formación de personal investigador).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Castro, J., Segovia, J. & Bueren, J. Transplantation of syngenic bone marrow contaminated with NGFr-marked WEHI-3B cells: an improved model of leukemia relapse in mice. Leukemia 14, 457–465 (2000). https://doi.org/10.1038/sj.leu.2401697

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401697

Keywords

This article is cited by

Search

Quick links