Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tracking the evolution of insecticide resistance in the mosquito Culex pipiens

Abstract

The evolution of pesticide resistance provides some of the most striking examples of darwinian evolution occurring over a human life span. Identification of resistance alleles opens an outstanding framework in which to study the evolution of adaptive mutations from the beginning of pesticide application1,2,3, the evolution of interactions between alleles (dominance4) or between loci (epistasis5,6). Here we show that resistance alleles can also be used as markers to dissect population processes at a microevolutionary scale. We have focused on the antagonistic roles of selection and migration involved in the dynamics of local adaptation with reference to allelic frequencies at two resistance loci in the mosquito Culex pipiens. We find that their frequencies follow an annual cycle of large amplitude (25%), and we precisely unravel the seasonal variation of migration and selection underlying this cycle. Our results provide a firm basis on which to devise an insecticide treatment strategy that will better control the evolution of resistance genes and the growth of mosquito populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample site locations in the north–south transect in Southern France.
Figure 2: Summer and winter clines of 1995 and 1996.
Figure 3: Annual variation of frequency clines at Ace.1 (subscript a) and Ester (subscript e) fitted by the migration–selection model.

Similar content being viewed by others

References

  1. Mallet, J. The evolution of insecticide resistance: have the insects won? Trends Ecol. Evol. 4, 336–340 (1989).

    Article  CAS  Google Scholar 

  2. McKenzie, J. A. Ecological and Evolutionary Aspects of Insecticide Resistance (Landes, Austin, 1996).

    Google Scholar 

  3. Mutéro, A., Pralavorio, M., Bride, J. M. & Fournier, D. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc. Natl Acad. Sci. USA 91, 5922–5926 (1994).

    Article  ADS  Google Scholar 

  4. Bourguet, D., Lenormand, T., Guillemaud, T., Marcel, V. & Raymond, M. Variation of dominance of newly arisen adaptive genes. Genetics 147, 1225–1234 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Davies, A. G. et al. Scalloped wings is the Lucilia cuprima Notch homologue and a candidate for the Modifier of fitness and asymmetry of diazinon resistance. Genetics 143, 1321–1337 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Raymond, M., Heckel, D. & Scott, J. G. Interaction between pesticide genes: model and experiment. Genetics 123, 543–551 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Haldane, J. B. S. The theory of a cline. J. Genet. 48, 277–284 (1948).

    Article  CAS  Google Scholar 

  8. May, R. M., Endler, J. A. & McMurtrie, R. E. Gene frequency clines in the presence of selection opposed by gene flow. Am. Nat. 109, 659–676 (1975).

    Article  Google Scholar 

  9. Barton, N. H. The structure of the hybrid zone in Uroderma bilobatum (Chiroptera: Phyllostomatidae). Evolution 36, 863–866 (1982).

    Article  CAS  Google Scholar 

  10. Szymura, J. M. & Barton, N. H. Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and Bombina variegata, near Cracow in southern Pland. Evolution 40, 1141–1159 (1986).

    PubMed  Google Scholar 

  11. Mallet, J. et al. Estimates of selection and gene flow from measure of clines width and linkage disequilibrium in Heliconius hybrid zones. Genetics 124, 921–936 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sites, J. W., Barton, N. H. & Reed, K. M. The genetic structure of a hybrid zone between two chromosome races of the Sceloporus grammicus complex (Sauria, Phrynosomatidae) in central Mexico. Evolution 49, 9–36 (1995).

    Article  Google Scholar 

  13. Porter, A. H., Wenger, R., Geiger, H., Scholl, A. & Shapiro, A. M. The Pottia daplidice-edusa hybrid zone in northwestern Italy. Evolution 51, 1561–1573 (1997).

    PubMed  Google Scholar 

  14. Barton, N. H. & Hewitt, G. M. Adaptation, speciation and hybrid zones. Nature 341, 497–503 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harrison, R. G. in Oxford Surveys in Evolutionary Biology (eds Antonovics, J. & Futuyma, D.) 69–128 (Oxford University Press, Oxford, 1990).

    Google Scholar 

  16. Slatkin, M. Gene flow and selection in a cline. Genetics 75, 733–756 (1973).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naglaki, T. Conditions for the existence of clines. Genetics 80, 595–615 (1975).

    Google Scholar 

  18. Cook, L. M., Dennis, R. L. H. & Mani, G. S. Melanic morph frequency in the peppered moth in the Manchester area. Proc. R. Soc. Lond. B 266, 293–297 (1999).

    Article  Google Scholar 

  19. Kettlewell, H. B. D. & Berry, R. J. The study of a cline. Heredity 16, 403–414 (1961).

    Article  Google Scholar 

  20. Mani, G. S. Atheoretical study of morph ratio clines with special reference to melanism in moths. Proc. R. Soc. Lond. B B210, 299–316 (1980).

    ADS  Google Scholar 

  21. Jain, S. K. & Bradshaw, A. D. Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21, 407–441 (1966).

    Article  Google Scholar 

  22. Chevillon, C., Bourguet, D., Rousset, F., Pasteur, N. & Raymond, M. Pleiotropy of adaptive changes in populations: comparisons among insecticide resistance genes in Culex pipiens. Genet. Res. Camb. 70, 195–204 (1997).

    Article  CAS  Google Scholar 

  23. Guillemaud, T. et al. Evolution of resistance in Culex pipiens: allele replacement and changing environment. Evolution 52, 443–453 (1998).

    PubMed  Google Scholar 

  24. Lenormand, T., Guillemaud, T., Bourguet, D. & Raymond, M. Evaluating gene flow using selected markers: a case study. Genetics 149, 1383–1392 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lenormand, T., Guillemaud, T., Bourguet, D. & Raymond, M. Appearance and sweep of a gene duplication: adaptive response and potential for a new function in the mosquito Culex pipiens. Evolution 52, 1705–1712 (1998).

    Article  Google Scholar 

  26. Slatkin, M. Gene flow and selection in a two locus system. Genetics 81, 787–802 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lenormand, T. & Raymond, M. Analysis of clines with variable selection and variable migration. Am. Nat.(in the press).

  28. Lenormand, T. & Raymond, M. Resistance management: the stable zone strategy. Proc. R. Soc. Lond. B 265, 1985–1990 (1998).

    Article  Google Scholar 

  29. Anderson, D. R., Burnham, K. P. & White, G. C. AIC model selection in overdispersed capture-recapture data. Ecology 75, 1780–1793 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Chevillon, I. Chuine, T. Day, P. David, P. Jarne, M. Kirkpatrick, J.Lagnel, Y. Michalakis, S. Otto, N. Pasteur F. Rousset and M. Whitlock for helpful comments and discussion, and C. Bernard and M. Marquine for technical assistance. This work was financed in part by GDR 1105 du programme Environnement, Vie et Sociétés du CNRS, by the PNETOX and by the Entente Interdépartementale pour la Démoustication du Languedoc Roussillon. T.L. was supported by an ASC fellowship from INRA contribution ISEM 99.068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lenormand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenormand, T., Bourguet, D., Guillemaud, T. et al. Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400, 861–864 (1999). https://doi.org/10.1038/23685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23685

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing