Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Competition among marine phytoplankton for different chelated iron species

Abstract

Dissolved-iron availability plays a critical role in controlling phytoplankton growth in the oceans1,2. The dissolved iron is overwhelmingly (99%) bound to organic ligands with a very high affinity for iron3,4,5, but the origin, chemical identity and biological availability of this organically complexed Fe is largely unknown6. The release into sea water of complexes that strongly chelate iron could result from the inducible iron-uptake systems of prokaryotes (siderophore complexes)7,8,9 or by processes such as zooplankton-mediated degradation and release of intracellular material (porphyrin complexes). Here we compare the uptake of siderophore- and porphyrin-complexed 55Fe by phytoplankton, using both cultured organisms and natural assemblages. Eukaryotic phytoplankton efficiently assimilate porphyrin-complexed iron, but this iron source is relatively unavailable to prokaryotic picoplankton (cyanobacteria). In contrast, iron bound to a variety of siderophores is relatively more available to cyanobacteria than to eukaryotes, suggesting that the two plankton groups exhibit fundamentally different iron-uptake strategies. Prokaryotes utilize iron complexed to either endogenous7,8,9 or exogenous siderophores9, whereas eukaryotes may rely on a ferrireductase system10,11 that preferentially accesses iron chelated by tetradentate porphyrins, rather than by hexadentate siderophores. Competition between prokaryotes and eukaryotes for organically-bound iron may therefore depend on the chemical nature of available iron complexes, with consequences for ecological niche separation, plankton community size-structure and carbon export in low-iron waters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uptake of organically-bound iron by natural phytoplankton communities.
Figure 2: Uptake of organically-bound iron by cyanobacteria cultures.
Figure 3: Uptake of organically-bound iron by diatom cultures.

Similar content being viewed by others

References

  1. Coale, K. H. et al. Amassive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Wu, J. & Luther, G. W. Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand method and a kinetic approach. Mar. Chem. 50, 159–177 (1995).

    Article  CAS  Google Scholar 

  4. Rue, E. L. & Bruland, K. W. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar. Chem. 50, 117–138 (1995).

    Article  CAS  Google Scholar 

  5. Witter, A. E. & Luther, G. W. Variation in Fe-organic complexation with depth in the Northwestern Atlantic Ocean as determined using a kinetic approach. Mar. Chem. 62, 241–258 (1998).

    Article  CAS  Google Scholar 

  6. Hutchins, D. A. in Progress in Phycological Research Vol. 11(eds Chapman, D. & Round, F.) 1–49 (Biopress, Bristol, 1995).

    Google Scholar 

  7. Wilhelm, S. W. Ecology of iron-limited cyanobacteria: a review of physiological responses and implications for aquatic systems. Aquat. Microbial Ecol. 9, 295–303 (1995).

    Article  Google Scholar 

  8. Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science 281, 207–210 (1998).

    Article  CAS  Google Scholar 

  9. Granger, J. & Price, N. M. The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol. Oceanogr. 44, 541–555 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Jones, G. J., Palenik, B. P. & Morel, F. M. M. Trace metal reduction by phytoplankton: the role of plasmalemma redox enzymes. J. Phycol. 23, 237–244 (1987).

    Article  CAS  Google Scholar 

  11. Weger, H. G. Ferric and cupric reductase activities in the green alga Chalmydomonas reinhardtii: experiments using iron-limited chemostats. Planta 207, 377–384 (1999).

    Article  CAS  Google Scholar 

  12. Reid, R. T., Live, D. H., Faulkner, D. J. & Butler, A. Asiderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366, 455–458 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Hutchins, D. A. & Bruland, K. W. Grazer-mediated regeneration and assimilation of Fe, Zn and Mn from planktonic prey. Mar. Ecol. Prog. Ser. 110, 259–269 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Gobler, C. J. et al. Elemental release and bioavailability following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 42, 1492–1504 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Strom, S. L. Production of phaeopigments by marine protozoa: results of laboratory experiments analyzed by HPLC. Deep Sea Res. I 40, 57–80 (1993).

    Article  CAS  Google Scholar 

  16. Head, E. J. H. & Harris, L. R. Feeding selectivity by copepods grazing on natural mixtures of phytoplankton determined by HPLC analysis of pigments. Mar. Ecol. Prog. Ser. 110, 75–83 (1994).

    Article  ADS  CAS  Google Scholar 

  17. McCarthy, M., Pratum, T., Hedges, J. & Benner, R. Chemical composition of dissolved organic nitrogen in the sea. Nature 390, 150–154 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Hudson, R. J. M. & Morel, F. M. M. Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 35, 1002–1020 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Bruland, K. W., Donat, J. R. & Hutchins, D. A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555–1577 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Rich, H. R. & Morel, F. M. M. Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii. Limnol. Oceanogr. 35, 1555–1577 (1991).

    Google Scholar 

  21. Robinson, N. J., Procter, C. M., Connolly, E. L. & Guerinot, M. L. Aferric-chelate reductase for iron uptake from soils. Nature 397, 694–697 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Eide, D. Molecular biology of iron and zinc uptake in eukaryotes. Curr. Opin. Cell Biol. 9, 573–577 (1997).

    Article  CAS  Google Scholar 

  23. Weinberg, E. D. Cellular regulation of iron assimilation. Q. Rev. Biol. 64, 261–290 (1989).

    Article  CAS  Google Scholar 

  24. Brand, L. E. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36, 1756–1771 (1991).

    Article  ADS  Google Scholar 

  25. Sunda, W. G. & Huntsman, S. A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 50, 189–206 (1995).

    Article  CAS  Google Scholar 

  26. Boyd, P. W. & Newton, P. P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep-Sea Res. I 46, 63–91 (1999).

    Article  CAS  Google Scholar 

  27. Lewis, B. L. et al. Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Mar. Chem. 50, 179–188 (1995).

    Article  CAS  Google Scholar 

  28. Hutchins, D. A., DiTullio, G. R., Zhang, Y. & Bruland, K. W. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43, 1037–1054 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Hudson, R. J. M. & Morel, F. M. M. Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34, 1113–1120 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Schmidt, M. A. & Hutchins, D. A. Size-fractionated biological iron and carbon uptake along a coastal to offshore transect in the NE Pacific. Deep-Sea Res. II 46, 1999).

Download references

Acknowledgements

We thank D. Kirchman, W. Sunda, S. Wilhelm, Y. Zhang and the captain and crew of the RV Cape Henlopen. This work was supported by the US NSF Biological and Chemical Oceanography (D.A.H., A.E.W. and G.W.L.), NIH, and California Sea Grant (A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hutchins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchins, D., Witter, A., Butler, A. et al. Competition among marine phytoplankton for different chelated iron species. Nature 400, 858–861 (1999). https://doi.org/10.1038/23680

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23680

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing