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These results suggest that multiple criteria are used in selec
tion of simultaneously available inputs. On the basis of these 
criteria, items may be fed through a single channel, as Broad
bent originally proposed. 

I thank I. Smith for running the subjects, and L. R. Boutler 
for discussing the results. 
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Relationship between Stability and 
Connectedness of Non-linear Systems 
Gardner and Ashby1 have studied the relation between the 
probability of stability p(S) and the extent of connectedness 
("connectance") C of large linear dynamical systems. They 
found a very interesting on-off-type (numerical) result: for 
reasonably large systems (number of components n::::.lO) there 
is a critical value, Cc of C, below which the system is almost 
certainly stable, but above which it becomes almost certainly 
unstable. 

In this communication we outline the effect of non-linearity 
on this striking p(S)-C relationship; the general non-linearity 
of realistic models of physical systems lends particular import
ance to such an undertaking. 

Let the vector function x(t)=(x1(t) ... , x(t)) represent the 
state of the linear system at time t. The time development of 
x(t) is given by 

that is 
x(t)= Ax(t) 

n 
.X,(t) = l: alJx1(t), j= 1, ... , n 

j=l 

(1) 

(2) 

The system is assumed to be autonomous, that is, the aus are 
constants independent oft. 

The connectance C of the system (1) is defined as the fraction 
of off-diagonal elements alJ of A that are non-zero. Thus 
0~ C~ 1. For C=O the system is completely disconnected, 
and (2) separates into n independent, decoupled equations. 

The stability (uniform asymptotic stability) S of the linear 
system (1) can be related to the eigenvalue distribution of A: 
if all eigenvalues 'A1 satisfy Re('A1) < 0, then (1) is stable, other
wise it is unstable2 • 

The p(S)-C relationship was discovered in the following 
manner. (1) A value for n was chosen. (2) The n diagonal 
elements a11 of A were selected randomly from a uniform dis
tribution in ( -1.0, -0.1), that is, the individual x 1 were 
assumed to be intrinsically stable. (3) The x1s were then 
coupled by generating n(n-1)C non-zero off-diagonal elements 
randomly from a uniform distribution in ( -1., 1.). This com
pleted the construction of A. (4) A was then diagonalized and 
tested for stability. (5) For a given C steps 2-4 were repeated 
a large number of times; the fraction of random matrices 
found stable was then defined as (a measure of) the probability 
of stability p(S). (6) Steps 1-5 were repeated for different n 
values. 

In general p(S) decreases with increasing C. The larger n, 
the greater the rate of decrease. The surprising feature is the 
step-function-like drop of p(S) from 1 to 0 at some critical C 
value Cc for n2.10. Gardner and Ashby conjecture that for all 
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large complex dynamical systems such discontinuous behaviour 
is to be expected. 

The influence of non-linearities on the p(S)-C relation will 
be analysed in two stages: (a) Effect on S; (b) effect on C. 

(a) Consider the non-linear autonomous system 
n 

x1 = l: atJxi + Y,(xt. ... , x.), i= 1, ... , n (3) 
j=l 

where we assume that the Y1s are convergent power series in 
x~o beginning with terms of at least the second degree. Then 
one has the following theorem of Liapunov3

• 

(i) If (3) is stable for Y1 = 0, all i (that is, if (1) is stable), then 
the equilibrium (x1 = 0, all i) is asymptotically stable whatever 
the terms Y1 are. (ii) If (1) is unstable (has at least one 'A with 
Re('A) > 0) the equilibrium is unstable whatever the Y1 are. 
(iii) If (1) has some roots 'A with Re('A)=O but none with 
Re('A) > 0, then the terms in Y1 can be chosen such that they 
have either stability or instability. 

This theorem enables us to determine the stability of a class 
of non-linear systems (3) provided the stability of the precursor 
linear system (1) is known. 

(b) In trying to understand the effect of non-linearity on C 
one is faced with the problem of defining C unambiguously. 
(This is not trivial. Even in the linear case one makes the 
tacit assumption that the x 1s are physically well defined and 
meaningful components of the interacting system, that is that 
the coupling of these components does not destroy their physical 
identity; otherwise, purely mathematical transformations 
xt' = T(x1) can be constructed that would change C arbitrarily.) 
We ignore this dilemma and assume that the definition of C 
used for the linear system is also applicable in the non-linear 
case. We write 

n n 
Y,(xt. ... , Xn) = l: [ l: btkXk1 ]xJ> all i 

j=lk=l 

where the b1ks are constant. Then (3) becomes 
n 

Xt = l: {au + 
}=! 

n 
l: btkX/}XJ> i= 1, ... , n 

k=l 
(4) 

Assume that the linear constituent of (4) is diagonal and stable 
(that is, C=O, au= -oua11 , a11 >0). Clearly, Liapunov's 
theorem ensures that by different choices of the b1k one can 
vary C between 0 and 1, without affecting the stability of (4) ! 
Consider now a collection of linear systems (generated via the 
Gardner-Ashby procedure) which is characterized by a par
ticular (p(S), C) pair. According to our procedure, we can add 
non-linear terms to each linear system in the collection without 
affecting its stability either way ((i) and (ii) of Liapunov's 
theorem; we assume that the probability of (iii) being operative 
is negligible). At the same time, we can change the C values 
at will. In particular, the (p(S)= l,C< Cc) pairs can be 
changed to (p(S)= l,Cc~ C~ 1). 

These results indicate that in the presence of non-linearity 
the concept of critical connectance may be meaningless in its 
present form. This conclusion does not deny either the exis
tence or the importance of such a concept; it merely indicates 
that a more fundamental definition of connectance is needed. 
Perhaps an approach similar to Kauffman's4 will be more 
successful. 
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