Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean


The atmosphere overlying the ocean is very sensitive—physically, chemically and climatically—to air pollution. Given that clouds over the ocean are of great climatic significance, and that sulphate aerosols seem to be an important control on marine cloud formation1, anthropogenic inputs of sulphate to the marine atmosphere could exert an important influence on climate. Recently, sulphur emissions from fossil fuel burning by international shipping have been geographically characterized2, indicating that ship sulphur emissions nearly equal the natural sulphur flux from ocean to atmosphere in many areas3. Here we use a global chemical transport model to show that these ship emissions can be a dominant contributor to atmospheric sulphur dioxide concentrations over much of the world's oceans and in several coastal regions. The ship emissions also contribute significantly to atmospheric non-seasalt sulphate concentrations over Northern Hemisphere ocean regions and parts of the Southern Pacific Ocean, and indirect radiative forcing due to ship-emitted particulate matter (sulphate plus organic material) is estimated to contribute a substantial fraction to the anthropogenic perturbation of the Earth's radiation budget. The quantification of emissions from international shipping forces a re-evaluation of our present understanding of sulphur cycling and radiative forcing over the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contribution of ship emissions to SO2, July.
Figure 2: Contribution of ship emissions to non-seasalt sulphate, July.
Figure 3: Comparison of observed and modelled SO2 concentrations.

Similar content being viewed by others


  1. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo, and climate. Nature 336, 655–661 (1987).

    Article  ADS  Google Scholar 

  2. Corbett, J. J. & Fischbeck, P. S. Emissions from ships. Science 278, 823–824 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Corbett, J. J., Firschbeck, P. S. & Pandis, S. N. Global nitrogen and sulfur emissions inventories for oceangoing ships. J. Geophys. Res. 104, 3457–3470 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Benkovitz, C. M. et al. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101, 29239–29253 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Kasibhatla, P., Chameides, W. L. & St John, J. Athree-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic sulfate aerosols. J. Geophys. Res. 102, 3737–3759 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Pham, M., Muller, J.-F., Brasseur, G. P., Granier, C. & Mégie, G. Athree-dimensional study of the tropospheric sulfur cycle. J. Geophys. Res. 100, 26061–26092 (1995).

    Article  ADS  Google Scholar 

  7. Benkovitz, C. M. et al. Sulfate over the North Atlantic and adjacent continental regions: evaluation for October and November 1986 using a three-dimensional model driven by observation-derived meteorology. J. Geophys. Res. 99, 20725–20756 (1994).

    Article  ADS  Google Scholar 

  8. Capaldo, K. & Pandis, S. Dimethylsulfide chemistry in the remote marine atmosphere: Evaluation and sensitivity analysis of available mechanisms. J. Geophys. Res. 102, 23251–23267 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Davison, B. & Hewitt, C. N. Elucidation of the troposphere reactions of biogenic sulfur species from a field measurement campaign in NW Scotland. Chemosphere 28, 543–557 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Davison, B. et al. Dimethyl sulfide, methane sulfonic acid and physiochemical aerosol properties in Atlantic air from the United Kingdom in Halley Bay. J. Geophys. Res. 101, 22855–22867 (1996).

    Article  ADS  CAS  Google Scholar 

  11. De Bruyn, W. J., Bates, T. S., Cainey, J. M. & Saltzman, E. S. Shipboard measurements of dimethyls sulfide and SO2 southwest of Tasmania during the first Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103, 16703–16711 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Ferek, R. J. et al. Dimethyl sulfide in the Arctic atmosphere. J. Geophys. Res. 100, 26093–26104 (1995).

    Article  ADS  Google Scholar 

  13. Pio, C. A., Cerqueira, M. A., Castro, L. M. & Salgueiro, M. L. Sulphur and nitrogen compounds in variable marine/continental air masses at the southwest European coast. Atmos. Environ. 30, 3115–3127 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Talbot, R. W. et al. Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February–March 1994: Results from PEM-West B. J. Geophys. Res. 102, 28255–28274 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Thornton, D. C. & Bandy, A. R. Sulfur dioxide and dimethyl sulfide in the central Pacific troposphere. J. Atmos. Chem. 17, 1–13 (1993).

    Article  CAS  Google Scholar 

  16. Bandy, A. R., Scott, D. L., Blomquist, B. W., Chen, S. M. & Thornton, D. C. Low yields of SO2 from dimethyl sulfide oxidation in the marine boundary layer. Geophys. Res. Lett. 19, 1125–1127 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Hertel, O., Christensen, J. & Hov, O. Modelling of the end products of the chemical decomposition of DMS in the marine boundary layer. Atmos. Environ. 28, 2431–2449 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Saltelli, A. & Hjorth, J. Uncertainty and sensitivity analyses of OH-initiated dimethyl sulphide (DMS) oxidation kinetics. J. Atmos. Chem. 21, 187–221 (1995).

    Article  CAS  Google Scholar 

  19. Suhre, K. et al. Physico-chemical modeling of the first Aerosol Characterization Experiment (ACE 1) Lagrangian B1: A moving column approach. J. Geophys. Res. 103, 16433–16455 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Carlton, J. S., Wright, A. A. & Coker, R. J. Marine Exhaust Emissions—A Regional Survey of the English Channel (Marine Management (Holdings) Ltd, London, (1994).

    Google Scholar 

  21. Port of Los Angeles, PortofLongBeac, Dames & Moore, MorrisonandFoerste Control of Ship Emission in the South Coast Air Basin: Assessment of the Proposed Federal Implementation Plan Ship Fee Emission Fee Program (Port of Los Angeles, Los Angeles, California, (1994).

    Google Scholar 

  22. Nonroad Engine and Vehicle Emission Study (US Environmental Protection Agency, Washington DC, (1991).

  23. Radke, L. F., Coakley, J. A. J & King, M. D. Direct and remote sensing observations of the effects of ships on clouds. Science 246, 1146–1149 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. King, M. D., Radke, L. F. & Hobbs, P. V. Optical properties of marine stratocumulus clouds modified by ships. J. Geophys. Res. 98, 2729–2739 (1993).

    Article  ADS  Google Scholar 

  25. Ferek, R. J., Hegg, D. A., Hobbs, P. V., Durkee, P. & Nielsen, K. Measurements of ship-induced tracks in clouds off the Washington coast. J. Geophys. Res. 103, 23199–23206 (1998).

    Article  ADS  Google Scholar 

  26. Carlton, J. S. et al. Marine Exhaust Emissions Research Programme (Lloyd's Register Engineering Services, London, (1995).

    Google Scholar 

  27. Lyyranen, J., Jokiniemi, J., Kauppinen, E., Joutsensaari, J. & Auvinen, A. Particle formation in medium speed diesel engines operating with heavy fuel oils. J. Aerosol Sci. 29, S1003–S1004 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley & Sons, New York, (1998).

    Google Scholar 

  29. IPCC Radiative Forcing of Climate Change. The 1994 Report of the Scientific Assessment Working Group of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge Univ. Press, (1995).

    Google Scholar 

Download references


This work was supported by the US NSF and the NOAA Office of Global Programs.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Spyros N. Pandis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capaldo, K., Corbett, J., Kasibhatla, P. et al. Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature 400, 743–746 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing