Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role for Ferredoxins in the Origin of Life and Biological Evolution

An Erratum to this article was published on 05 November 1971

Abstract

THE ferredoxins are members of a class of metalloproteins known as iron–sulphur proteins which act as electron carriers in such diverse biochemical processes as carbon metabolism, nitrogen fixation, photosynthesis and steroid hydroxylation1,2. They are relatively small proteins with molecular weights of 6,000 to 12,000; they contain 2–8 atoms of iron and equivalent amounts of inorganic sulphur per molecule, transferring electrons at low redox potentials (−300 to −500 mV at pH 7) and having a characteristic electron paramagnetic resonance signal at g= 1.94 in the reduced state. Ferredoxins have been found in a wide range of organisms, from the primitive anaerobic bacteria to all higher plants and animals. A knowledge of the changes in their amino-acid sequence3 is therefore of great value to the study of the evolution of these organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hall, D. O., and Evans, M. C. W., Nature, 223, 1432 (1969).

    Google Scholar 

  2. Buchanan, B. B., and Arnon, D. I., Adv. Enzymol., 33, 119 (1970).

    CAS  PubMed  Google Scholar 

  3. Nolan, C., and Margoliash, E., Ann. Rev. Biochem., 37, 727 (1968).

    Article  CAS  Google Scholar 

  4. Kenyon, D. H., and Steinman, G., Biochemical Predestination (McGraw-Hill, New York, 1969).

  5. Lemmon, R. M., Chem. Rev., 70, 95 (1970).

    Article  CAS  Google Scholar 

  6. Lipmann, F., in Chemical Evolution and the Origin of Life (edit. by Buvet, R., and Ponnamperuma, C.) (North Holland, Amsterdam, in the press).

  7. Tanaka, M., Nakashima, T., Benson, A., Mower, H. F., and Yasunobu, K. T., Biochemistry, 6, 1666 (1966).

    Article  Google Scholar 

  8. Benson, A. M., Mower, H. F., and Yasunobu, K. T., Proc. US Nat. Acad. Sci., 55, 1532 (1966).

    Article  ADS  CAS  Google Scholar 

  9. Rall, S. C., Bolinger, R. E., and Cole, R. D., Biochemistry, 8, 2386 (1969).

    Article  Google Scholar 

  10. Lovering, J. F., Le Maitre, R. W., and Chappel, B. W., Nature, 230, 18 (1971).

    ADS  CAS  Google Scholar 

  11. Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C., Kaplan, I. R., and Moore, C., Nature, 228, 923 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Kvenvolden, K. A., Lawless, J. C., and Ponnamperuma, C., Proc. US Nat. Acad. Sci., 68, 486 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Malkin, R., and Rabinowitz, J. C., Biochem. Biophys. Res. Commun., 23, 822 (1966).

    Article  CAS  Google Scholar 

  14. Bernal, J. D., The Origin of Life (Weidenfeld and Nicolson, London, 1967).

    Google Scholar 

  15. Evans, M. C. W., Hall, D. O., Bothe, H., and Whatley, F. R., Biochem. J., 110, 485 (1968).

    Article  CAS  Google Scholar 

  16. Echlin, P., Symp. Soc. Gen. Microbiol., 20, 221 (1970).

    Google Scholar 

  17. Matsubara, H., Jukes, T. H., and Cantor, C. R., Brookhaven Symp. Biol., 21, 201 (1968).

    CAS  PubMed  Google Scholar 

  18. Aggarwal, S. J., Rao, K. K., and Matsubara, H., J. Biochem. (Tokyo), 69, 601 (1971).

    CAS  PubMed  Google Scholar 

  19. Rao, K. K., Cammack, R., Hall, D. O., and Johnson, C. E., Biochem. J., 122, 257 (1971).

    Article  CAS  Google Scholar 

  20. Gibson, J. F., Hall, D. O., Thornley, J. H. M., and Whatley, F. R., Proc. US Nat. Acad. Sci., 56, 987 (1966).

    Article  ADS  CAS  Google Scholar 

  21. Johnson, C. E., Cammack, R., Rao, K. K., and Hall, D. O., Biochem. Biophys. Res. Commun., 43, 564 (1971).

    Article  CAS  Google Scholar 

  22. Tanaka, M., Haniu, M., and Yasunobu, K. T., Biochem. Biophys. Res. Commun., 39, 1182 (1970).

    Article  CAS  Google Scholar 

  23. Böger, P., Planta, 92, 105 (1970).

    Article  Google Scholar 

  24. Sugeno, K., and Matsubara, H., J. Biol. Chem., 244, 2979 (1969).

    CAS  PubMed  Google Scholar 

  25. Schürmann, P., Buchanan, B. B., and Matsubara, H., Biochim. Biophys. Acta, 223, 450 (1970).

    Article  Google Scholar 

  26. Rao, K. K., and Matsubara, H., Biochem. Biophys. Res. Commun., 38, 500 (1970).

    Article  CAS  Google Scholar 

  27. Benson, A. M., and Yasunobu, K. T., J. Biol. Chem., 244, 955 (1969).

    CAS  PubMed  Google Scholar 

  28. Matsubara, H., Sasaki, R. M., and Chain, R. K., J. Biol. Chem., 243, 1723 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HALL, D., CAMMACK, R. & RAO, K. Role for Ferredoxins in the Origin of Life and Biological Evolution. Nature 233, 136–138 (1971). https://doi.org/10.1038/233136a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/233136a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing