Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor

Abstract

Axonemal dyneins are force-generating ATPases that produce movement of eukaryotic cilia and flagella1,2. Several studies indicate that inner-arm dyneins mainly produce bending moments in flagella3,4 and that these motors have inherent oscillations in force and motility5,6,7,8. Processive motors such as kinesins have high duty ratios of attached to total ATPase cycle (attached plus detached) times9 compared to sliding motors such as myosin10. Here we provide evidence that subspecies-c, a single-headed axonemainner-arm dynein, is processive but has a low duty ratio. Ultrastructurally it is similar to other dyneins11,12,13,14, with a single globular head, long stem and a slender stalk that attaches to microtubules. In vitro studies of microtubules sliding over surfaces coated with subspecies-c at low densities (measured by single-molecule fluorescence) show that a single molecule is sufficient to move a microtubule more than 1 µm at 0.7 µm s−1. When many motors interact the velocity is 5.1 µm s−1, fitting a duty ratio of 0.14. Using optical trap nanometry, we show that beads carrying a single subspecies-c motor move processively along the microtubules in 8-nm steps but slip backwards under high loads. These results indicate that dynein subspecies-c functions in a very different way from conventional motor proteins, and has properties that could produce self-oscillation in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical and ultrastructural characterization of subspecies-c.
Figure 2: Microtubule motion in vitro driven by subspecies-c.
Figure 3: Relationship between velocity of microtubule translation and subspecies-c surface density.
Figure 4: Optical trap nanometry of subspecies-c-coated beads.

Similar content being viewed by others

References

  1. Gibbons, I. R. Cilia and flagella of eukaryotes. J. Cell Biol. 91, 107s–124s (1981).

    Article  CAS  Google Scholar 

  2. Holzbaur, E. L. F. & Vallee, R. B. Dyneins: Molecular structure and cellular function. Annu. Rev. Cell Biol. 10, 339–372 (1994).

    Article  CAS  Google Scholar 

  3. Kamiya, R. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants. Cell Motil. Cytoskeleton 32, 98–102 (1995).

    Article  CAS  Google Scholar 

  4. Brokaw, C. J. & Kamiya, R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm fucntion. Cell Motil. Cytoskeleton 8, 68–75 (1987).

    Article  CAS  Google Scholar 

  5. Takahashi, K. & Kamimura, S. Dynamic aspects of microtubule sliding in sperm flagella. J. Submicrosc. Cytol. 15, 1–3 (1983).

    CAS  PubMed  Google Scholar 

  6. Oiwa, K. & Takahashi, K. The force-velocity relationship for microtubule sliding in demembranated sperm flagella of the sea urchin. Cell Struct. Funct. 13, 193–205 (1988).

    Article  CAS  Google Scholar 

  7. Kamimura, S. & Kamiya, R. High-frequency nanometre-scale vibration in ‘quiescent’ flagellar axonemes. Nature 340, 476–478 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Shingyoji, C. et al. Dynein arms are oscillating force generators. Nature 393, 711–714 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin moelcules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Uyeda, T. Q. P., Warrick, H. M., Kron, S. J. & Spudich, J. A. Quantized velocities at low myosin densities in an in vitro motility assay. Nature 352, 307–311 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Goodenough, U. W. et al. High-pressure liquid chromatography fractionation of Chlamydomonas dynein extracts and characterization of inner-arm dynein subunits. J. Mol. Biol. 194, 481–494 (1987).

    Article  CAS  Google Scholar 

  12. Goodenough, U. & Heuser, J. Structural comparison of purified dynein proteins with in situ dynein arms. J. Mol. Biol. 180, 1083–1118 (1984).

    Article  CAS  Google Scholar 

  13. Amos, L. A. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93, 19–28 (1989).

    CAS  PubMed  Google Scholar 

  14. Samso, M., Radermacher, M., Frank, J. & Koonce, M. P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998).

    Article  CAS  Google Scholar 

  15. Kagami, O. & Kamiya, R. Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein. J. Cell Sci. 103, 653–664 (1992).

    CAS  Google Scholar 

  16. Gee, M. A., Heuser, J. E. & Vallee, R. B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Funatsu, T. et al. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Oiwa, K. et al. Microscopic kinetic measurements of single Cy3-EDA-ADP molecules interacting with myosin filaments in vitro. Biophys. J. 72, A180 (1997).

    Google Scholar 

  19. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Hancock, W. O. & Howard, J. Processivity of the motor protein kinesin requires two heads. J. Cell Biol. 140, 1395–1405 (1998).

    Article  CAS  Google Scholar 

  21. Howard, J. & Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. Methods Cell Biol. 39, 105–113 (1993).

    Article  CAS  Google Scholar 

  22. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).

    Article  CAS  Google Scholar 

  23. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    Article  CAS  Google Scholar 

  24. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  Google Scholar 

  25. Paschal, B. M., Obar, R. A. & Vallee, R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature 342, 569–572 (1989).

    Article  ADS  CAS  Google Scholar 

  26. King, S. M., Otter, T. & Witman, G. B. Purification and characterization of Chlamydomonas flagellar dyneins. Methods Enzymol. 134, 291–306 (1986).

    Article  CAS  Google Scholar 

  27. Vallee, R. B. Reversible assembly purification of microtubules without assembly-promoting agents and further purification of tubulin, microtubule-associated proteins, and MAP fragments. Methods Enzymol. 134, 89–104 (1986).

    Article  CAS  Google Scholar 

  28. Katayama, E. The effects of various nucleotides on the structure of actin-attached myosin subfragment-1 studied by quick-freeze deep-etch electron microscopy. J. Biochem. 106, 751–770 (1989).

    Article  CAS  Google Scholar 

  29. Jameson, D. M. & Eccleston, J. F. Fluorescent nucleotide analogs: Synthesis and applications. Methods Enzymol. 278, 363–390 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Anson for discussion and comments on the manuscript and M.Kikumoto for single molecule measurements. This work was partly supported by the Hyogo Science and Technology Foundation (K.O. and H.K.) and a grant-in-aid from the Ministry of Education, Science and Culture of Japan (K.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Oiwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakakibara, H., Kojima, H., Sakai, Y. et al. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400, 586–590 (1999). https://doi.org/10.1038/23066

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23066

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing