Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis

Abstract

Oxygenic photosynthesis is widely accepted as the most important bioenergetic process happening in Earth's surface environment1. It is thought to have evolved within the cyanobacterial lineage, but it has been difficult to determine when it began. Evidence based on the occurrence and appearance of stromatolites2 and microfossils3 indicates that phototrophy occurred as long ago as 3,465 Myr although no definite physiological inferences can be made from these objects. Carbon isotopes and other geological phenomena4,5 provide clues but are also equivocal. Biomarkers are potentially useful because the three domains of extant life—Bacteria, Archaea and Eukarya—have signature membrane lipids with recalcitrant carbon skeletons. These lipids turn into hydrocarbons in sediments and can be found wherever the recordis sufficiently well preserved. Here we show that 2-methylbacteriohopanepolyols occur in a high proportion of cultured cyanobacteria and cyanobacterial mats. Their 2-methylhopane hydrocarbon derivatives are abundant in organic-rich sediments as old as 2,500 Myr. These biomarkers may help constrain the age of the oldest cyanobacteria and the advent of oxygenic photosynthesis. They could also be used to quantify the ecological importance of cyanobacteria through geological time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of bacteriohopanepolyols (1, 2) typical of those found in cyanobacteria and their geohopane analogues recognized in sediments and petroleum (3, 4).

Similar content being viewed by others

References

  1. Blankenship, R. E. & Hartman, H. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23, 94–97 (1998).

    Article  CAS  Google Scholar 

  2. Walter, M. R. in Early Life on Earth (ed. Bengtson, S.) 270–286 (Columbia Univ. Press, New York, (1994).

    Google Scholar 

  3. Schopf, J. W. Microfossils of the early Archean Apex Chert: New evidence of the antiquity of life. Science 260, 640–646 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Buick, R. The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulfate-deficient Archaean lakes. Science 255, 74–77 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Schopf, J. W. & Klein, C. The Proterozoic Biosphere. A Multidisciplinary Study (Cambridge Univ. Press, (1992).

    Book  Google Scholar 

  6. Jürgens, U. J., Simonin, P. & Rohmer, M. Localisation and distribution of hopanoids in membrane systems of the cyanobacterium Synechocystis PCC 6714. FEMS Microbiol. Lett. 92, 285–288 (1992).

    Article  Google Scholar 

  7. Peters, K. E. & Moldowan, J. M. The Biomarker Guide—Interpreting Molecular Fossils in Sediments and Petroleum (Prentice-Hall, Englewood Cliffs, New Jersey, (1992).

    Google Scholar 

  8. Rohmer, M. The biosynthesis of triterpenoids of the hopane series in the eubacteria: a mine of new enzyme reactions. Pure Appl. Chem. 65, 1293–1298 (1993).

    Article  CAS  Google Scholar 

  9. Rohmer, M., Bouvier-Navé, P. & Ourisson, G. Distribution of hopanoid triterpenes in prokaryotes. J.Gen. Microbiol. 130, 1137–1150 (1984).

    CAS  Google Scholar 

  10. Zundel, M. & Rohmer, M. Prokaryotic triterpenoids 3. The biosynthesis of 2β-methylhopanoids and3β-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus spp. pasteurianus. Eur. J. Biochem. 150, 35–39 (1985).

    Article  CAS  Google Scholar 

  11. Simonin, P., Jürgens, U. J. & Rohmer, M. Bacterial triterpenoids of the hopane series from the prochlorophyte Prochlorothrix hollandica and their intracellular localisation. Eur. J. Biochem. 241, 865–871 (1996).

    Article  CAS  Google Scholar 

  12. Knani, M., Corpe, W. A. & Rohmer, M. Bacterial hopanoids from pink-pigmented facultative methylotrophs and from green plant surfaces. Microbiology 140, 2755–2759 (1994).

    Article  CAS  Google Scholar 

  13. Vilchèze, C., Llopiz, P., Neunlist, S., Poralla, K. & Rohmer, M. Prokaryotic triterpenoids: new hopanoids from the nitrogen-fixing bacteria Azotobacter vinelandii, Beijerinckia indica and Beijerinckia mobilis. Microbiology 140, 2794–2753 (1994).

    Article  Google Scholar 

  14. Renoux, J.-M. & Rohmer, M. Prokaryotic triterpenoids. New bacteriohopane tetrol cyclitol ethers from methylotrophic bacterium Methylobacterium organophilum. Eur. J. Biochem. 151, 405–410 (1985).

    Article  CAS  Google Scholar 

  15. Hermann, D. Des biohopanoı¨des aux géohopanoı¨des. Une approche de la formation des fossiles moléculaires de triterpénoı¨ds en série hopane. Thesis, Univ. Haute-Alsace(1995).

  16. Summons, R. E., Jahnke, L. L. & Simoneit, B. R. T. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?): Ciba Foundation Symposium 202 174–194 (Wiley, Chichester, (1996).

    Google Scholar 

  17. Summons, R. E. & Jahnke, L. L. in Biomarkers in Sediments and Petroleum (eds Moldowan, J. M., Albrecht, P. & Philp, R. P.) 182–200 (Prentice Hall, Englewood Cliffs, New Jersey, (1992).

    Google Scholar 

  18. Summons, R. E. & Walter, M. R. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am. J. Sci. A 290, 212–244 (1990).

    Google Scholar 

  19. Bauld, J. in Microbial Mats: Stromatolites (eds Cohen, Y., Castenholz, R. W. & Halverson, H. O.) 39–58 (Alan Liss, New York, (1984).

    Google Scholar 

  20. Kenig, F. et al. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochim. Cosmochim. Acta 59, 2999–3015 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Golubic, S. in Early Life on Earth: Nobel Symposium No 84 (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, (1994).

    Google Scholar 

  22. Hayes, J. M., Summons, R. E., Strauss, H., Des Marais, D. J. & Lambert, I. B. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 81–133 (Cambridge Univ. Press, (1992).

    Book  Google Scholar 

  23. Buick, R., Rasmussen, B. & Krapez, B. Archean oil: evidence for extensive hydrocarbon generation and migration 2.5–3.5 Ga. AAPG Bull. 82, 50–69 (1998).

    CAS  Google Scholar 

  24. Price, L. C. Thermal stability of hydrocarbons in nature: limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta 57, 3261–3280 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Haug, G. H. et al. Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr. Paleooceanography 13, 427–432 (1998).

    Article  ADS  Google Scholar 

  26. Bisseret, P., Zundel, M. & Rohmer, M. Prokaryotic triterpenoids: 2. 2β-methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids. Eur. J. Biochem. 150, 29–34 (1985).

    Article  CAS  Google Scholar 

  27. Zhao, N. et al. Structures of two bacteriohopanoids with acyclic pentol side-chains from the cyanobacterium Nostoc PCC 6720. Tetrahedron 52, 2772–2778 (1996).

    Google Scholar 

  28. Llopiz, P., Jürgens, U. J. & Rohmer, M. Prokaryotic triterpenoids: Bacteriohopanetetrol glycuronosides from the thermophilic cyanobacterium Synechococcus PCC6907. FEMS Microbiol. Lett. 140, 199–202 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Taylor for providing Hamersley basin samples and associated geological and maturity data. M. Rohmer, J. Hayes, K. Hinrichs, A. Knoll and M. Walter provided critical and constructive comments on drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger E. Summons.

Additional information

Exobiology Biology Branch, NASA Ames Research Center, Moffett Field, 94035, California, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Summons, R., Jahnke, L., Hope, J. et al. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999). https://doi.org/10.1038/23005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing