Abstract
Semiconductor quantum dots, due to their small size, mark the transition between molecular and solid-state regimes, and are often described as ‘artificial atoms’ (13). This analogy originates from the early work on quantum confinement effects in semiconductor nanocrystals, where the electronic wavefunctions are predicted4 to exhibit atomic-like symmetries, for example ‘s ’ and ‘p ’. Spectroscopic studies of quantum dots have demonstrated discrete energy level structures and narrow transition linewidths5,6,7,8,9, but the symmetry of the discrete states could be inferred only indirectly. Here we use cryogenic scanning tunnelling spectroscopy to identify directly atomic-like electronic states with s and p character in a series of indium arsenide nanocrystals. These states are manifest in tunnelling current–voltage measurements as two- and six-fold single-electron-charging multiplets respectively, and they follow an atom-like Aufbau principle of sequential energy level occupation10.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.



References
- 1
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).
- 2
Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 (1993).
- 3
Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).
- 4
Brus, L. E. Electron-electron and electron-hole interaction in small semiconductor crystallites. The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).
- 5
Norris, D. J., Sacra, A., Murray, C. B. & Bawendi, M. G. Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys. Rev. Lett. 72, 2612–2615 (1994).
- 6
Leon, M., Petroff, P. M., Leonard, D. & Fafard, S. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots. Science 267, 1966–1968 (1995).
- 7
Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogenous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).
- 8
Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).
- 9
Banin, U. et al. Size dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory. J. Chem. Phys. 109, 2306–2309 (1998).
- 10
Herzberg, G. Atomic Spectra and Atomic StructureCh. 3 (Prentice-Hall, New York, (1937).
- 11
Guzelian, A. A., Banin, U., Kadavanich, A. V., Peng, X. & Alivisatos, A. P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 69, 1432–1434 (1996).
- 12
Mucic, R. C., Storhoff, J. J., Lestinger, R. L. & Mirkin, C. A. ADNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).
- 13
Alivisatos, A. P. et al. Organization of nanocrystal molecules using DNA. Nature 382, 609–611 (1996).
- 14
Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconductor polymer. Nature 370, 354–357 (1994).
- 15
Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McEuen, P. L. Asingle electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701 (1997).
- 16
Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. Semiconductor nanocrystals covalently bound to metal surface with self-assembled monolayers. J. Am. Chem. Soc. 114, 5221–5230 (1992).
- 17
Grabert, H. & Devoret, M. H. (eds) Single Charge Tunneling (Plenum, New York, (1992).
- 18
Alperson, B., Cohen, S., Rubinstein, I. & Hodes, G. Room-temperature conductance spectroscopy of CdSe quantum dots using a scanning force microscope. Phys. Rev. B 52, R17017–R17020 (1995).
- 19
Porath, D., Levi, Y., Tarabia, M. & Millo, O. Tunneling spectroscopy of a single C60molecule in the presence of charging effects. Phys. Rev. B 56, 9829–9833 (1997).
- 20
Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy (Cambridge Univ. Press, (1994).
- 21
Ekimov, A. I. et al. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10, 100–107 (1993).
- 22
Fu, H. & Zunger, A. Excitons in InP quantum dots. Phys. Rev. B 57, R15064–R15067 (1998).
- 23
Bertram, D., Micic, O. I. & Nozik, A. J. Excited state spectroscopy of InP quantum dots. Phys. Rev. B 57, R4265–R4268 (1998).
- 24
Banin, U., Lee, J. C., Guzelian, A. A., Kadavanich, A. V. & Alivisatos, A. P. Exchange interaction in InAs nanocrystal quantum dots. Superlattices Microstruct. 22, 559–567 (1997).
- 25
Alperson, B., Hodes, G., Rubinstein, I., Porath, D. & Millo, D. Energy level tunneling spectroscopy and single electron charging in individual CdSe quantum dots. Appl. Phys. Lett.(in the press).
Acknowledgements
We thank B. Alperson, G. Hodes and I. Rubinstein for discussions. This work was supported in part by the Israeli Academy of Sciences and Humanities. U.B. acknowledges the support of an Alon fellowship.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Banin, U., Cao, Y., Katz, D. et al. Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature 400, 542–544 (1999). https://doi.org/10.1038/22979
Received:
Accepted:
Issue Date:
Further reading
-
Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration
Chemical Reviews (2021)
-
Van Hove Singularities and Trap States in Two-Dimensional CdSe Nanoplatelets
Nano Letters (2021)
-
Coupled Colloidal Quantum Dot Molecules
Accounts of Chemical Research (2021)
-
Linear and third order nonlinear optical properties of GaAs quantum dot in terahertz region
Physica E: Low-dimensional Systems and Nanostructures (2020)
-
Quantum confinement in group III–V semiconductor 2D nanostructures
Nanoscale (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.