Possible Dopamine Derivatives capable of Crossing the Blood-Brain Barrier in relation to Parkinsonism


THE exact neurophysiological role of dopamine is still unclear, but it has been implicated in the functioning of the extra-pyramidal motor system (EPS)1,2. Experiments on animals and humans, however, indicate that the smooth functioning of the EPS depends on a fine balance between several biogenic amines3–5. Nevertheless, deficiencies of brain dopamine resulting from degeneration of the substantia nigra seem to be associated with the extrapyramidal symptoms of Parkinson's disease1–6. In accordance with these observations, attempts have been made to raise brain dopamine levels in patients suffering from Parkinsonism. Dopamine itself cannot be used, for it is incapable of crossing the blood-brain barrier, and therefore dopamine precursors, in particular L-3,4-dihydroxyphenylalanine (L-dopa), have been used7–10. Although such treatment apparently relieves the symptoms of hypokinesia, rigidity and posture, tremor is little affected and the necessity for large daily dosage and the side-effects of nausea and hypotension remain as serious drawbacks to the therapeutic use of L-dopa. Stock11 has recently suggested that 2-amino-4-hydroxy-6,7-dimethyltetrahydropteridine may be a potential anti-parkinsonism agent since this tyrosine hydroxylase cofactor may be deficient in patients suffering from Parkinsonism12.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Hornykiewicz, O., Pharmacol. Rev., 18, 925 (1966).

  2. 2

    Hornykiewicz, O., Pharmako-psychiat. Neuro-psyehopharmakol., 1, 6 (1968).

  3. 3

    Friedman, A. H., and Everett, G. M., Adv. Pharmacol., 3, 83 (1964).

  4. 4

    Curzon, G., Intern. Rev. Neurobiol., 10, 323 (1968).

  5. 5

    Ernst, A. M., Acta Physiol. Pharmacol. Neerl., 15, 141 (1969).

  6. 6

    Barbeau, A., Rev. Canad. Biol., 26, 55 (1967).

  7. 7

    Calne, D. B., Stern, G. M., Laurence, D. R., Sharkey, J., and Armitage, P., Lancet, i, 744 (1969).

  8. 8

    Calne, D. B., Stem, G. M., Spiers, A. S. D., Laurence, D. R., and Armitage, P., Lancet, ii, 973 (1969).

  9. 9

    Cotzias, G. C., Papavasiliou, P. S., and Gellne, R., New Engl. J. Med., 280, 337 (1969).

  10. 10

    Godwin-Austen, E. B., Tomlinson, E. B., Frears, C. C., and Kok, H. W. L., Lancet, ii, 976 (1969).

  11. 11

    Stock, R., J. Amer. Med. Assoc., 210, 1594 (1969).

  12. 12

    Kuehl, F. A., Vandenheuvel, W. J. A., and Ormond, E. E., Nature, 217, 136 (1968).

  13. 13

    Daly, J. W., Creveling, C. R., and Witkop, B. J., Med. Chem., 9, 273 (1966).

  14. 14

    Creveling, C. R., Daly, J. W., Tokuyama, T., and Witkop, B., Experientia, 25, 26 (1969).

  15. 15

    Brooks, C. J. W., and Horning, E. C., Anal. Chem., 36, 1540 (1960).

  16. 16

    Horning, M. G., Moss, A. M., and Horning, E. C., Biochim. Biophys. Acta, 148, 597 (1967).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.