Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Creation of human tumour cells with defined genetic elements


During malignant transformation, cancer cells acquire genetic mutations that override the normal mechanisms controlling cellular proliferation. Primary rodent cells are efficiently converted into tumorigenic cells by the coexpression of cooperating oncogenes1,2. However, similar experiments with human cells have consistently failed to yield tumorigenic transformants3,4,5, indicating a fundamental difference in the biology of human and rodent cells. The few reported successes in the creation of human tumour cells have depended on the use of chemical or physical agents to achieve immortalization6, the selection of rare, spontaneously arising immortalized cells7,8,9,10, or the use of an entire viral genome11. We show here that the ectopic expression of the telomerase catalytic subunit (hTERT)12 in combination with two oncogenes (the simian virus 40 large-T oncoprotein and an oncogenic allele of H-ras) results in direct tumorigenic conversion of normal human epithelial and fibroblast cells. These results demonstrate that disruption of the intracellular pathways regulated by large-T, oncogenic ras and telomerase suffices to create a human tumor cell.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Expression of large-T, ras and telomerase.
Figure 2: Expression of hTERT stabilizes telomere length.
Figure 3: Expression of hTERT immortalizes large-T-expressing HEK and BJ cells.
Figure 4: Growth properties and clonality of tumorigenic cells.


  1. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Ruley, H. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Sager, R. Senescence as a mode of tumor suppression. Environ. Health Perspect. 93, 59–62 (1991).

    Article  CAS  Google Scholar 

  4. O'Brien, W., Stenman, G. & Sager, R. Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc. Natl Acad. Sci. USA 83, 8659–8663 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Stevenson, M. & Volsky, D. J. Activated v-myc and v-ras oncogenes do not transform normal human lymphocytes. Mol. Cell. Biol. 6, 3410–3417 (1986).

    Article  CAS  Google Scholar 

  6. Kang, al. Involvement of tyrosine phosphorylation of p185c-erb/neu in tumorigenicity induced by X-rays and the neu oncogene in human breast epithelial cells. Mol. Carcinogen. 21, 225–233 (1998).

    Article  CAS  Google Scholar 

  7. Yakum, G. al. Transformation of human bronchial epithelial cells transfected by the Harvey ras oncogene. Science 227, 1174–1179 (1985).

    Article  ADS  Google Scholar 

  8. Rhim, J. al. Neoplastic transformation of human epidermal keratinocytes by AD12-SV40 and Kirsten sarcoma viruses. Science 227, 1250–1252 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Hurlin, P. J., Maher, V. M. & McCormick, J. J. Malignant transformation of human fibroblasts caused by expression of a transfected T24 HRAS oncogene. Proc. Natl Acad. Sci. USA 86, 187–181 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Burger, A. al. Effect of oncogene expression on telomerase activation and telomere length in human endothelial, fibroblast and prostate epithelial cells. Int. J. Oncol. 13, 1043–1048 (1998).

    CAS  PubMed  Google Scholar 

  11. Flore, al. Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394, 588–592 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Nakamura, T. M. & Cech, T. R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

    Article  CAS  Google Scholar 

  13. Kipling, D. Telomere structure and telomerase expression during mouse development and tumorigenesis. Eur. J. Cancer 33, 792–800 (1997).

    Article  CAS  Google Scholar 

  14. Kim, N. al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Shay, J. W. & Bacchetti, S. Asurvey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  Google Scholar 

  16. Harley, C. al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 307–315 (1994).

    Article  CAS  Google Scholar 

  17. Bodnar, A. al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Kiyono, al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Lustig, A. J. Crisis intervention: the role of telomerase. Proc. Natl Acad. Sci. USA 96, 3339–3341 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 nd p16ink4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  21. Counter, C. al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA 95, 14723–14728 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Morales, C. al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genet. 21, 115–118 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Zalvide, J., Stubdal, H. & DeCaprio, J. A. The J domain of simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol. Cell. Biol. 18, 1408–1415 (1998).

    Article  CAS  Google Scholar 

  24. Damania, B., Mital, R. & Alwine, J. C. Simian virus 40 large T antigen interacts with human TFIIB-related factor and small nuclear RNA-activating protein complex for transcriptional activation of TATA-containing polymerase III promoter. Mol. Cell. Biol. 18, 1331–1338 (1998).

    Article  CAS  Google Scholar 

  25. Reddel, R. R., Bryan, T. M. & Murnane, J. P. Immortalized cells with no detectable telomerase activity. A review. Biochemistry (Mosc.) 62, 1254–1262 (1997).

    CAS  Google Scholar 

  26. Jiang, al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nature Genet. 21, 111–114 (1999).

    Article  CAS  Google Scholar 

  27. Jat, P. S., Cepko, C. L., Mulligan, R. C. & Sharp, P. A. Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol. Cell. Biol. 6, 1204–1217 (1986).

    Article  CAS  Google Scholar 

  28. Kim, N. W. & Wu, F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 25, 2595–2597 (1997).

    Article  CAS  Google Scholar 

  29. Cifone, M. A. & Fidler, I. J. Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc. Natl Acad. Sci. USA 77, 1039–1043 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Feuer, al. Potential role of natural killer cells in controlling tumorigenesis by human T-cell leukemia viruses. J. Virol. 69, 1328–1333 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank M. Fleming for interpretation of tumour histology, J. Smith for the gift of early passage BJ fibroblasts, and S. Dessain, B. Elenbaas, D. Fruman, P. Steiner, S. Stewart and the members of Weinberg laboratory for helpful discussions and review of the manuscript. This work was supported in part by Merck and Co. (R.A.W.), the US NCI (R.A.W., A.S.L.), a Damon Runyon–Walter Winchell Cancer Research Foundation Postdoctoral Fellowship (W.C.H.), and a Human Frontiers Postdoctoral Fellowship (R.L.B.). C.M.C. is a Whitehead Scholar; W.C.H. is a Herman and Margaret Sokol postdoctoral fellow. R.A.W. is an American Cancer Society Research Professor and a Daniel K. Ludwig Cancer Research Professor.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Robert A. Weinberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hahn, W., Counter, C., Lundberg, A. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing