Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular Model of Drag Reduction by Polymer Solutes

Abstract

TOMS1 has shown that in turbulent flow above the critical Reynolds number the drag is substantially reduced by adding a small amount of high polymer solute to the liquid2–14. In some cases, there is also a remarkable shift of the onset of turbulence to higher Reynolds number15,16 with a corresponding reduction of drag. Typical drag reductions of over 50 per cent have been achieved in pipes, on immersed moving bodies and on ship hulls by the addition of 20 p.p.m. by weight of ‘Polyox WSR 301’, which is an unbranched polyethylene oxide of approximate molecular weight 4 × 106. Larger doses of polymer solute produce little additional effect. A minor effect of this type—about 4 per cent drag reduction—can also be achieved by the addition of a relatively large amount of very fine sand17–19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Toms, B. A., Proc. First Intern. Congr. Rheology, 135, Scheveningen (1949).

  2. Savins, J. G., Soc. Petrol. Eng. J., 4, 203 (1964).

    Article  CAS  Google Scholar 

  3. Lumley, J. L., Appl. Mechn. Rev., 20, 1139 (1967).

    Google Scholar 

  4. Fabula, A. G., Lumley, J. L., and Taylor, W. D., Modern Developments in the Mechanics of Continua (Academic Press, New York, 1966).

    Google Scholar 

  5. Castro, W., and Square, W., Appl. Sci. Res., 18, 81 (1967).

    Article  CAS  Google Scholar 

  6. Levy, J., and Davis, S., Intern. Shipbuild. Prog., 14, 152 (1967).

    Article  Google Scholar 

  7. White, A. D., J. Fluid Mech., 28, 195 (1967).

    Article  ADS  CAS  Google Scholar 

  8. Virk, P. S., Merrill, E. W., Mickley, H. S., Smith, K. A., and Mollo-Christensen, E. L., J. Fluid Mech., 30, 305 (1967).

    Article  ADS  CAS  Google Scholar 

  9. Gadd, G. E., Nature, 217, 1040 (1968).

    Article  ADS  Google Scholar 

  10. Kowalski, T., Quart. Trans. Roy. Inst. Naval Arch., 110, 221 (1968).

    Google Scholar 

  11. Tanner, R. I., Ind. and Eng. Chem. Fundamentals, 7, 33 (1968).

    Article  Google Scholar 

  12. Wells, C. S., Harkness, J., and Meyer, W. A., Amer. Inst. Aeronaut. Astronaut. J., 6, 250 (1968).

    Article  CAS  Google Scholar 

  13. Baley, B. J., Nature, 222, 373 (1969).

    Article  ADS  Google Scholar 

  14. Barnard, B. Y. S., and Sellin, R. H. J., Nature, 222, 1160 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Hershey, H. C., and Zakin, J. L., Ind. Eng. Chem. Fundam., 6, 381 (1967).

    Article  CAS  Google Scholar 

  16. Hand, J. H., and Williams, M. C., J. Appl. Polymer Sci., 13, 2499 (1969).

    Article  CAS  Google Scholar 

  17. Gyr, A., Proc. Twelfth Cong. Intern. Assoc. Hydraulic Res., Colorado State Univ., B2, 9 (1967).

    Google Scholar 

  18. Gyr, A., Nature, 219, 928 (1968).

    Article  ADS  Google Scholar 

  19. Muller, A., Proc. Twelfth Cong. Intern. Assoc. Hydraulic Res., Colorado State Univ., D12, 107 (1967).

    Google Scholar 

  20. Elata, C., and Poreh, M., Rheol. Acta, 5, 148 (1966).

    Article  Google Scholar 

  21. Gadd, G. E., Nature, 212, 874 (1966).

    Article  ADS  CAS  Google Scholar 

  22. Lockett, F. Y., Nature, 222, 937 (1969).

    Article  ADS  Google Scholar 

  23. Takserman-Krozer, R., J. Polymer Sci., A1, 2477 and 2487 (1963).

    CAS  Google Scholar 

  24. Takserman-Krozer, R., J. Polymer Sci., C16, 2845 and 2855 (1967).

    Google Scholar 

  25. Peterlin, A., J. Polymer Sci., B4, 287 (1966).

    Article  CAS  Google Scholar 

  26. Peterlin, A., Pure and Appl. Chem., 12, 563 (1966).

    Article  CAS  Google Scholar 

  27. Pennings, A. J., and Kirl, A. M., Kolloid Z. Z. Polymene, 205, 160 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PETERLIN, A. Molecular Model of Drag Reduction by Polymer Solutes. Nature 227, 598–599 (1970). https://doi.org/10.1038/227598b0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/227598b0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing