Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of Diameter on the Electrical Constants of Frog Skeletal Muscle Fibres

Abstract

THE relatively large electrical capacity of skeletal muscle fibres1,2 is generally attributed to the transverse tubular system which ramifies over the cross-section of the fibre and enlarges the effective area of the surface. From an analysis of the frequency dependence of the impedance, Falk and Fatt3 assigned a capacity of 2.6 µF/cm2 to the surface membrane and 4.1 µF/cm2 to the contribution of the tubules. Gage and Eisenberg4 showed that fibres “detubulated” by the glycerol method had a low frequency capacity of 2.1 µF/cm2 as compared with 5–12 µF/cm2 in normal fibres.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B., Proc. Roy. Soc., B, 135, 506 (1948).

    Article  ADS  Google Scholar 

  2. Fatt, P., and Katz, B., J. Physiol., 115, 320 (1951).

    Article  CAS  Google Scholar 

  3. Falk, G., and Fatt, P., Proc. Roy. Soc., B, 160, 69 (1964).

    Article  ADS  CAS  Google Scholar 

  4. Gage, P. W., and Eisenberg, R. S., J. Gen. Physiol., 53, 265 (1969).

    Article  CAS  Google Scholar 

  5. Hodgkin, A. L., and Rushton, W. A. H., Proc. Roy. Soc., B, 133, 444 (1946).

    Article  ADS  Google Scholar 

  6. Eisenberg, R. S., and Gage, P. W., J. Gen. Physiol., 53, 279 (1969).

    Article  CAS  Google Scholar 

  7. Cole, K. S., and Curtis, H. J., J. Gen. Physiol., 22, 37 (1938).

    Article  CAS  Google Scholar 

  8. Tasaki, L., and Hagiwara, S., Amer. J. Physiol., 188, 423 (1957).

    CAS  PubMed  Google Scholar 

  9. Freygang, jun., W. H., Rapoport, S. I., and Peachey, L. D., J. Gen. Physiol., 50, 2437 (1967).

    Article  Google Scholar 

  10. Howell, J. N., and Jenden, D. J., Fed. Proc., 26, 553 (1967).

    Google Scholar 

  11. Nakajima, S., Nakajima, Y., and Peachey, L. D., J. Physiol., 200, 115P (1969).

    CAS  PubMed  Google Scholar 

  12. Krolenko, S. A., Nature, 221, 966 (1969).

    Article  ADS  CAS  Google Scholar 

  13. Cole, K. S., Membranes, Ions and Impulses (University of California Press, 1968).

    Google Scholar 

  14. Adrian, R. H., Chandler, W. K., and Hodgkin, A. L., J. Physiol., 204, 207 (1969).

    Article  CAS  Google Scholar 

  15. Falk, G., Biophys. J., 8, 608 (1968).

    Article  ADS  CAS  Google Scholar 

  16. Peachey, L. D., J. Cell Biol., 25, 209 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NAKAJIMA, S., HODGKIN, A. Effect of Diameter on the Electrical Constants of Frog Skeletal Muscle Fibres. Nature 227, 1053–1055 (1970). https://doi.org/10.1038/2271053a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2271053a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing