Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes


The sensitivity of oceanic thermohaline circulation to freshwater perturbations is a critical issue for understanding abrupt climate change1. Abrupt climate fluctuations that occurred during both Holocene and Late Pleistocene times have been linked to changes in ocean circulation2,3,4,5,6, but their causes remain uncertain. One of the largest such events in the Holocene occurred between 8,400 and 8,000 calendar years ago2,7,8 (7,650–7,200 14C years ago), when the temperature dropped by 4–8 °C in central Greenland2 and 1.5–3 °C at marine4,7 and terrestrial7,8 sites around the northeastern North Atlantic Ocean. The pattern of cooling implies that heat transfer from the ocean to the atmosphere was reduced in the North Atlantic. Here we argue that this cooling event was forced by a massive outflow of fresh water from the Hudson Strait. This conclusion is based on our estimates of the marine 14C reservoir for Hudson Bay which, in combination with other regional data, indicate that the glacial lakes Agassiz and Ojibway9,10,11,12, (originally dammed by a remnant of the Laurentide ice sheet) drained catastrophically 8,470 calendar years ago; this would have released >1014 m3 of fresh water into the Labrador Sea. This finding supports the hypothesis2,7,8 that a sudden increase in freshwater flux from the waning Laurentide ice sheet reduced sea surface salinity and altered ocean circulation, thereby initiating the most abrupt and widespread cold event to have occurred in the past 10,000 years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Northeastern Canada and adjacent seas.
Figure 2: Climate proxy records of the ‘82-kyr’ cold event. Both 14C (top) and calendar (lower) timescales are given.


  1. 1

    Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2upset the current balance? Science 278, 1582–1588 (1997).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Alley, R. B. et al. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483–486 (1997).

    ADS  Article  Google Scholar 

  3. 3

    Street-Perrott, F. A. & Perrott, R. A. Abrupt climate fluctuations in the tropics: the influence of the Atlantic Ocean circulation. Nature 343, 607–612 (1990).

    ADS  Article  Google Scholar 

  4. 4

    Bond, G. et al. Apervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science 278, 1257–1266 (1997).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hughen, K. A., Overpeck, J. T., Trumbore, S. & Peterson, L. C. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 51–54 (1996).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Stuiver, M., Grootes, P. M. & Braziunas, T. F. The GISP2 18O record of the past 16,500 yrs and the role of the sun, ocean and volcanoes. Quat. Res. 44, 341–354 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Klitgaard-Kristensen, D., Sejrup, H.-P., Haflidason, H., Johnsen, S. & Spurk, M. Aregional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation? J. Quat. Sci. 13, 165–169 (1998).

    Article  Google Scholar 

  8. 8

    von Grafenstein, U., Erlenkeuser, H., Müller, J., Jouzel, J. & Johnsen, S. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim. Dyn. 14, 73–81 (1998).

    Article  Google Scholar 

  9. 9

    Hardy, L. La déglaciation et les épisodes lacustre et marin sur les versants de la partie québécoise des basses terres de la baie de James. Geogr. Phys. Quat. 31, 261–273 (1977).

    ADS  Google Scholar 

  10. 10

    Teller, J. T. in The Geology of North America Vol. K-3, North America and Adjacent Oceans during the Last Deglaciation(eds Ruddiman, W. F. & Wright, H. E. Jr) 39–69 (Geol. Soc. of America, Boulder, Colorado, 1987).

  11. 11

    Veillette, J. J. Evolution and paleohydrology of Glacial Lakes Barlow and Ojibway. Quat. Sci. Rev. 13, 945–971 (1994).

    ADS  Article  Google Scholar 

  12. 12

    Dyke, A. S. & Prest, V. K. Paleogeography of northern North America, 18000–5000 years ago.(Map 1703A, Scale 1:12500000, Geol. Surv. of Canada, Ottawa, 1989).

  13. 13

    Andrews, J. T. & Falconer, G. Late glacial and postglacial history and emergence of the Ottawa Islands, Hudson Bay, N.W.T. : Evidence on the deglaciation of Hudson Bay. Can. J. Earth Sci. 6, 1263–1276 (1969).

    ADS  Article  Google Scholar 

  14. 14

    Andrews, J. T. et al. Final stages in the collapse of the Laurentide Ice Sheet, Hudson Strait, Canada,NWT: Based on 14C AMS dates and magnetic susceptibility logs. Quat. Sci. Rev. 14, 983–1004 (1995).

    ADS  Article  Google Scholar 

  15. 15

    Kerwin, M. W. Aregional stratigraphic isochron (ca. 8000 14C yr B. P. ) from the final deglaciation of Hudson Strait. Quat. Res. 46, 89–98 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Skinner, R. G. Quaternary stratigraphy of the Moose River basin, Ontario. Geol. Surv. Can. Bull. 225(1973).

  17. 17

    Jennings, A. E., Manley, W. F., MacLean, B. & Andrews, J. T. Marine evidence for the last glacial advance across eastern Hudson Strait, eastern Canadian Arctic. J. Quat. Sci. 13, 501–514 (1998).

    Article  Google Scholar 

  18. 18

    Syvitski, J. P., Skene, K. I., Nicholson, M. K. & Morehead, M. D. Plum 1. 1: Deposition of sediment from a fluvial plume. Comput. Geosci. 24, 159–171 (1998).

    ADS  Article  Google Scholar 

  19. 19

    Andrews, J. T., Keigwin, L., Hall, F. R. & Jennings, A. E. Late Quaternary (12 ka) sediment and meltwater events on the Labrador shelf: Evidence from high-resolution cores in Cartwright Saddle (54–55°N). J. Quat. Sci.(in the press).

  20. 20

    Bilodeau, G., Hillaire-Marcel, C., de Vernal, A. & Stoner, J. Changes in vertical structure of Labrador Sea water masses during the last 25 ka based on oxygen isotopes in planktic and benthic foraminifera. Geosci. Can. 23, (Suppl: Quebec 1998 Abstr.) 18–19 (1998).

    Google Scholar 

  21. 21

    Vilks, G., MacLean, B., Deonarine, B., Currie, C. G. & Moran, K. Late Quaternary paleoceanography and sedimentary environments in Hudson Strait. Geogr. Phys. Quat. 43, 161–178 (1989).

    Google Scholar 

  22. 22

    Stuiver, M. & Braziunas, T. F. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35, 137–189 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Karrow, P. F. Carbonates, granulometry, and color of tills on the south-central Canadian Shield and their implications for stratigraphy and radiocarbon dating. Boreas 21, 379–391 (1992).

    Article  Google Scholar 

  24. 24

    Bard, E. et al. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth Planet. Sci. Lett. 126, 275–287 (1994).

    ADS  Article  Google Scholar 

  25. 25

    Drinkwater, K. F. in Canadian Inland Seas (ed. Martini, I. P.) 237–264 (Elsevier, New York,(1986).

    Book  Google Scholar 

  26. 26

    Stuiver, M. & Reimer, P. J. Radiocarbon calibration program Rev 3.0.3A - Mac Test Version #6. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  27. 27

    Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn. 12, 799–811 (1996).

    Article  Google Scholar 

  28. 28

    Fanning, A. F. & Weaver, A. J. Temporal-geographical meltwater influences on the North Atlantic Conveyor: Implication for the Younger Dryas. Paleoceanography 12, 307–320 (1997).

    ADS  Article  Google Scholar 

  29. 29

    Manabe, S. & Stouffer, R. J. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography 12, 321–336 (1997).

    ADS  Article  Google Scholar 

  30. 30

    Talley, L. D. in Mechanisms of Millennial-scale Global Climate Change. (eds Clark, P. U., Webb, R. & Keigwin, L.) (AGU Monogr., Am Geophys. Union, Washington DC, in the press).

Download references


We thank the Canadian Museum of Nature for providing archived live-collected shells, and G. Bond, D. Fisher, B. MacLean and J. Teller for comments on the manuscript. This work was supported by the Terrain Sciences Division, Geological Survey of Canada, and the US NSF (A.E.J. and J.T.A.).

Author information



Corresponding author

Correspondence to D. C. Barber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barber, D., Dyke, A., Hillaire-Marcel, C. et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing