Action Potential Model based on a Lipophosphoprotein

Abstract

LIGHT scattering and birefringence changes1 support recent “conformational” theories of nerve activity2, and Tasaki has shown that an action potential requires only the presence of univalent ions within the nerve axon and of divalent ions externally2; this recalls initiation of action potentials in poly-acrylic acid membranes by dilatory (alkali), followed by contractile (acid) stimuli3. Nerve membrane movements might therefore be swelling changes arising from divalent–monovalent ion-exchange. Heald has isolated from nervous tissue a lipophosphatidylserine peptide which he suggested could function as cation-exchange membrane sites4. Here I use Heald's suggestion to show how the properties to be expected of such a lipo protein, or related polymers, can account for action potentials in nerve.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cohen, L. B., Keynes, R. D., and Hille, B., Nature, 218, 438 (1968).

  2. 2

    Tasaki, I., Nerve Excitation: A Macromolecular Approach (C. C. Thomas, Springfield, Ill., 1967). Changeux, J. P., Thiery, J., Tung, Y.., and Kittel, C., Proc. US Nat. Acad. Sci., 57, 335 (1967).

  3. 3

    Walters, D. H., Kuhn, W. and Kuhn, H. J., Nature, 189, 381 (1961).

  4. 4

    Heald, P. J., Nature, 193, 451 (1962); Biochem. J., 78, 340 (1961); ibid., 80, 510 (1961).

  5. 5

    Keder, W. E., Martin, Z. C., and Bray, L. A., Solvent Extraction Chemistry of Metals, Proc. Int. Conf. Harwell, 343 (Macmillan, London, 1968); USAEC Report, BNWL-SA-273; Nucl. Sci. Eng., 20, 362 (1964).

  6. 6

    Kilbourn, B. T., Dunitz, J. D., Pioda, L. A. R., and Simon, W., J. Mol. Biol., 30, 559 (1967).

  7. 7

    Pressman, B. C., Fed. Proc., 27, 1283 (1968).

  8. 8

    Pedersen, C. J., Fed. Proc., 27, 1305 (1968).

  9. 9

    Howarth, J. V., Keynes, R. D., and Ritchie, J. M., J. Physiol., 194, 745 (1968).

  10. 10

    Hodgkin, A. L., and Katz, B., J. Physiol., 109, 240 (1949). Spyropoulos, C. S., J. Gen. Physiol., 48, 49 (1965).

  11. 11

    Seeman, P., Int. Rev. Neurobiol., 9, 145 (1966).

  12. 12

    Frank, G. B., and Sanders, H. D., Brit. J. Pharmacol., 21, 1 (1963).

  13. 13

    Frankenhauser, B., and Hodgkin, A. L., J. Physiol., 137, 218 (1957). Coutinho, E. M., J. Gen. Physiol., 49, 845 (1966).

  14. 14

    Kuperman, A. S., Altura, B. T., and Chezar, J. A., Nature, 217, 673 (1968).

  15. 15

    Holan, G., Nature, 221, 1025 (1969).

  16. 16

    Gordon, H. T., and Welsh, J. H., J. Cell. Comp. Physiol., 31, 395 (1948). Narahashi, T., and Haas, H. G., J. Gen. Physiol., 51, 177 (1968).

  17. 17

    Baker, P. F., Brit. Med. Bull., 24, 179 (1968).

  18. 18

    Weiss, D. E., Austral. J. Biol. Sci. (in the press).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

WEISS, D. Action Potential Model based on a Lipophosphoprotein. Nature 223, 634–635 (1969). https://doi.org/10.1038/223634a0

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.