Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F

Abstract

Protein backbones and side chains display varying degrees of flexibility, which allows many slightly different but related conformational substates to occur1. Such fluctuations are known to differ in both timescale and magnitude, from rotation of methyl groups (nanoseconds) to the flipping of buried tyrosine rings (seconds)2,3. Because many mechanisms for protein function require conformational change, it has been proposed that some of these ground-state fluctuations are related to protein function4. But exactly which aspects of motion are functionally relevant remains to be determined. Only a few examples so far exist where function can be correlated to structural fluctuations with known magnitude and timescale5,6. As part of an investigation of the mechanism of action of the Bacillus subtilis response regulator Spo0F, we have explored the relationship between the motional characteristics and protein–protein interactions. Here we use a set of nuclear magnetic resonance 15N relaxation measurements to determine the relative timescales of Spo0F backbone fluctuations on the picosecond-to-millisecond timescale. We show that regions having motion on the millisecond timescale correlate with residues and surfaces that are known to be critical for protein–protein interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determination of NMR relaxation parameters.
Figure 2: Results from Modelfree analysis are plotted according to primary sequence position.
Figure 3: Correlating protein motions with protein–protein interactions.

Similar content being viewed by others

References

  1. Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280, 558–563 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Nicholson, L. K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263 (1992).

    Article  CAS  Google Scholar 

  3. Wüthrich, K. & Wagner, G. NMR investigations of the dynamics of the aromatic amino acid residues in the basic pancreatic trypsin inhibitor. FEBS Lett. 50, 265–268 (1975).

    Article  Google Scholar 

  4. Frauenfelder, H., Parak, F. & Young, R. D. Conformational substates in proteins. Annu. Rev. Biophys. Chem. 17, 451–479 (1988).

    Article  CAS  Google Scholar 

  5. Nicholson, L. K. et al. Flexibility and function in HIV1 protease. Nature Struct. Biol. 2, 274–280 (1995).

    Article  CAS  Google Scholar 

  6. Kay, L. E. Protein dynamics from NMR. Nature Struct. Biol. 5, 145–152 (1998).

    Google Scholar 

  7. Burbulys, D., Trach, K. A. & Hoch, J. A. Initiation of sporulation in Bacillus subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552 (1991).

    Article  CAS  Google Scholar 

  8. Tzeng, Y-L. & Hoch, J. A. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay protein revealed by alanine scanning mutagenesis. J. Mol. Biol. 272, 200–212 (1997).

    Article  CAS  Google Scholar 

  9. Tzeng, Y-L., Feher, V. A., Cavanagh, J., Perego, M. & Hoch, J. A. Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB. Biochemistry 37, 16538–16545 (1998).

    Article  CAS  Google Scholar 

  10. Feher, V. A. et al. High resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Biochemistry 36, 10015–10025 (1997).

    Article  CAS  Google Scholar 

  11. Kay, L. E., Torchia, D. A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy. Application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  12. Clore, G. M. et al. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 112, 4989–4991 (1990).

    Article  CAS  Google Scholar 

  13. Mandel, A. M., Akke, M. & Palmer, A. G. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995).

    Article  CAS  Google Scholar 

  14. Stone, M. J. et al. Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 31, 4394–4406 (1992).

    Article  CAS  Google Scholar 

  15. . Tjandra, N., Feller, S. E., Pastor, R. W. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566 (1995).

    Article  CAS  Google Scholar 

  16. Lee, L., Rance, M., Chazin, W. J. & Palmer, A. G. Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J. Biomol. NMR 9, 287–298 (1997).

    Article  CAS  Google Scholar 

  17. Volz, K. in Two Component Signal Transduction (eds Hoch, J. A. & Silhavy, T. J.) 53–64 (American Society for Microbiology, Washington DC, (1995).

    Google Scholar 

  18. Parkinson, J. S. & Kofoid, E. C. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26, 71–112 (1992).

    Article  CAS  Google Scholar 

  19. Feher, V. A., Tzeng, Y.-L., Hoch, J. A. & Cavanagh, J. Identification of communication networks in Spo0F: a model for phosphorylation induced conformational change and implications for activation of multiple domain bacterial response regulators. FEBS Lett. 425, 1–6 (1998).

    Article  CAS  Google Scholar 

  20. Wyss, D. F., Dayie, K. T. & Wagner, G. The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with the millisecond to microsecond motions. Protein Sci. 6, 534–542 (1997).

    Article  CAS  Google Scholar 

  21. Kriwacki, R. W., Hengst, L., Tennant, L., Reed, S. I. & Wright, P. E. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl Acad. Sci. USA 93, 11504–11509 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Gryk, M. R., Jardetzky, O., Klig, L. S. & Yanofsky, C. Flexibility of DNA binding domain of trp repressor required for recognition of different operator sequences. Protein Sci. 5, 1195–1197 (1996).

    Article  CAS  Google Scholar 

  23. Kay, L. E., Muhandiram, D. R., Wolf, G., Shoelson, S. E. & Forman-Kay, J. D. Correlation between binding and dynamics at SH2 domain interface. Nature Struct. Biol. 5, 156–163 (1998).

    Article  CAS  Google Scholar 

  24. Ansari, A. et al. Protein states and proteinquakes. Proc. Natl Acad. Sci. USA 82, 5000–5004 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Zhu, X., Rebello, J., Matsumura, P. & Volz, K. Crystal structures of CheY mutants Y106W and T87I/Y106W. CheY activation correlates with movement of residue 106. J. Biol. Chem. 272, 5000–5006 (1997).

    Article  CAS  Google Scholar 

  26. Jiang, M., Bourret, R. B., Simon, M. I. & Volz, K. Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.3?å structure of an aspartate to lysine mutant at position 13 of CheY. J.Biol. Chem. 272, 11850–11855 (1997).

    Article  CAS  Google Scholar 

  27. Lowry, D. F. et al. Signal transduction in chemotaxis: a propagating conformation change upon phosphorylation of CheY. J. Biol. Chem. 269, 26358–26362 (1994).

    CAS  PubMed  Google Scholar 

  28. Feher, V. A. et al. 1H, 15N, and 13C backbone chemical shift assignments, secondary structure and magnesium binding characteristics of the Bacillus subtilis response regulator, Spo0F, determined by heteronuclear high resolution NMR spectroscopy. Protein Sci. 4, 1801–1814 (1995).

    Article  CAS  Google Scholar 

  29. Farrow, N. A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src Homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  30. Akke, M., Carr, P. A. & Palmer, A. G. Heteronuclear correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection and sensitivity enhancement using z rotations. J. Magn. Reson. Ser. B 104, 298–302 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Hauer and R. Stack for mass spectrometry analysis; R. Macoll and L.Eislie for help with circular dichroism experiments; S. Lehrman for photographic assistance; R.Thompson for assistance with graphics; A. G. Palmer, M. Rance and N.Skelton for helpful discussions; and J. Zapf, Y.-L. Tzeng and J. A. Hoch for sharing data before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cavanagh.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feher, V., Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289–293 (1999). https://doi.org/10.1038/22357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22357

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing