Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mass Loss from Pulsating Neutron Stars


DESPITE the trend of recent evidence, both observational and theoretical1, that radial pulsations may not be the source of variation in pulsars, the pulsational hypothesis has still not been disproved. In particular, the expected pulsational damping times of degenerate stars may be sufficiently long (for small oscillations) that observable variations could occur over a period of millions of years (J. M. Cohen and L. C. Rosen, private communication), in spite of some earlier theoretical evidence to the contrary2. One of the chief difficulties with the pulsational hypothesis, however, is that the calculated fundamental periods are longer than 1.5 s for white dwarfs3,4 and shorter than 1 ms for most neutron-star models5, whereas most pulsars have periods lying between these extremes. Overtone pulsations in white dwarfs have been suggested as a mechanism3, but this possibility seems rather unlikely, and neither it nor the suggestion that pulsations are occurring in the non-degenerate envelope6 or atmosphere7 of a white dwarf can explain the 33 ms variations of the Crab Nebula pulsar in Taurus. In this article, a new possibility involving radial pulsations of a neutron star which is undergoing mass loss will be pointed out, with a view to interpreting the observed period8,9 and secular increase of period10,11 of the Crab Nebula pulsar.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Cohen, J. M., and Cameron, A. G. W., Astrophys. Lett., 3, 3 (1969).

    ADS  Google Scholar 

  2. 2

    Mock, M. S., thesis, Univ. Columbia (1967).

  3. 3

    Faulkner, J., and Gribbin, J., Nature, 218, 734 (1968).

    ADS  Article  Google Scholar 

  4. 4

    Cocke, W. J., and Cohen, J. M., Nature, 219, 1009 (1968).

    ADS  Article  Google Scholar 

  5. 5

    Tsuruta, S., Wright, J. P., and Cameron, A. G. W., Nature, 206, 1137 (1965).

    ADS  Article  Google Scholar 

  6. 6

    Van Horn, H. M., Nature, 220, 762 (1968).

    ADS  Article  Google Scholar 

  7. 7

    Black, D. C., Nature, 221, 157 (1969).

    ADS  Article  Google Scholar 

  8. 8

    Staelin, D. H., and Reifenstein, E. C., Science, 162, 1481 (1968).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Cocke, W. J., Disney, M. J., and Taylor, D. J., Nature, 221, 525 (1969).

    ADS  Article  Google Scholar 

  10. 10

    Richards, D. W., IAU Circ. No. 2114 (1968).

  11. 11

    Duthie, J. G., Sturch, C., Richer, H. B., and Rodney, P., Science, 163, 1320 (1969).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Gold, T., Nature, 221, 25 (1969).

    ADS  Article  Google Scholar 

  13. 13

    Finzi, A., and Wolf, R. A., Astrophys. J. Lett., 155, L107 (1969).

    ADS  Article  Google Scholar 

  14. 14

    Trimble, V., Nature, 221, 1038 (1969).

    ADS  Article  Google Scholar 

  15. 15

    Tsuruta, S., and Cameron, A. G. W., Canad. J. Phys., 44, 1895 (1966).

    ADS  Article  Google Scholar 

  16. 16

    Colgate, S. A., and White, R. H., Astrophys. J., 143, 626 (1966).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Arnett, W. D., Canad. J. Phys., 45, 1621 (1967).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Haymes, R. C., Ellis, D. V., Fishman, G. J., Kurfess, J. D., and Tucker, W. H., Astrophys. J. Lett., 151, L9 (1968).

    ADS  Article  Google Scholar 

  19. 19

    Woltjer, L., Astrophys. J., 140, 1309 (1964).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    Blaauw, A., Bull. Astron. Inst. Neth., 15, 265 (1961).

    ADS  Google Scholar 

  21. 21

    Wielebinski, R., Vaughan, A. E., and Large, M. I., Nature, 221, 47 (1969).

    ADS  Article  Google Scholar 

  22. 22

    Davidson, K., and Terzian, Y., Nature, 221, 729 (1969).

    ADS  Article  Google Scholar 

  23. 23

    Burbidge, G., and Hoyle, F., Nature, 221, 847 (1969).

    ADS  Article  Google Scholar 

  24. 24

    Finzi, A., and Wolf, R. A., Astrophys. J., 150, 115 (1967).

    ADS  Article  Google Scholar 

  25. 25

    Wheeler, J. C., Hansen, C. J., and Cox, J. P., Astrophys. Lett., 2, 253 (1968).

    ADS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

STOTHERS, R. Mass Loss from Pulsating Neutron Stars. Nature 223, 279–280 (1969).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links