Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Therapy of tuberculosis in mice by DNA vaccination

Abstract

Mycobacterium tuberculosis continues to kill about 3 million people every year1, more than any other single infectious agent. This is attributed primarily to an inadequate immune response towards infecting bacteria, which suffer growth inhibition rather than death and subsequently multiply catastrophically. Although the bacillus Calmette–Guérin (BCG) vaccine is widely used, it has major limitations as a preventative measure2. In addition, effective treatment requires that patients take large doses of antibacterial drug combinations for at least 6 months after diagnosis3, which is difficult to achieve in many parts of the world and is further restricted by the emergence of multidrug-resistant strains of M. tuberculosis. In these circumstances, immunotherapy to boost the efficiency of the immune system in infected patients could be a valuable adjunct to antibacterial chemotherapy4. Here we show in mice that DNA vaccines, initially designed to prevent infection, can also have a pronounced therapeutic action. In heavily infected mice, DNA vaccinations can switch the immune response from one that is relatively inefficient and gives bacterial stasis to one that kills bacteria. Application of such immunotherapy in conjunction with conventional chemotherapeutic antibacterial drugs might result in faster or more certain cure of the disease in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic effects of DNA vaccination against an established M. tuberculosis H37Rv infection.
Figure 2: Elimination of residual M. tuberculosis by DNA vaccination after chemotherapy.

Similar content being viewed by others

References

  1. Kochi, A. Global challenge of tuberculosis. Lancet 44, 608–609 (1994).

    Google Scholar 

  2. Bloom, B. R. & Fine, P. E. M. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 531–557 (American Society for Microbiology, Washington DC, (1994).

    Book  Google Scholar 

  3. Hong Kong Chest Service & British Medical Research Council. Controlled trial of 4 three-times-weekly regimens and a daily regimen all given for 6 months for pulmonary tuberculosis. Second report: the results up to 24 months. Tubercle 63, 89–98 (1982).

    Article  Google Scholar 

  4. Young, D. B. & Duncan, K. Prospects for new interventions in the treatment and prevention of mycobacterial disease. Annu. Rev. Microbiol. 49, 641–673 (1995).

    Article  CAS  Google Scholar 

  5. Tascon, R. E. et al. Vaccination against tuberculosis by DNA injection. Nature Med. 2, 888–892 (1996).

    Article  CAS  Google Scholar 

  6. Huygen, K. et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nature Med. 2, 893–898 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Zhu, X. J. et al. Functions and specificity of T cells following nucleic acid vaccination of mice against Mycobacterium tuberculosis infection. J. Immunol. 158, 5921–5926 (1997).

    CAS  PubMed  Google Scholar 

  8. Bonato, V. L. D., Lima, V. M. F., Tascon, R. E., Lowrie, D. B. & Silva, C. L. Identification and characterization of protective T cells in hsp65 DNA vaccinated and Mycobacterium tuberculosis infected mice. Infect. Immun. 66, 169–175 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Altare, F. et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280, 1432–1435 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Donnelly, J. J., Ulmer, J. B., Shiver, J. W. & Liu, M. A. DNA vaccines. Annu. Rev. Immunol. 15, 617–648 (1997).

    Article  CAS  Google Scholar 

  12. Orme, I. M., Roberts, A. D., Griffin, J. P. & Abrams, J. S. Cytokine secretion by CD4 T-lymphocytes acquired in response to Mycobacterium tuberculosis infection. J. Immunol. 15, 518–525 (1993).

    Google Scholar 

  13. Zhang, M. et al. T-cell cytokine responses in human infection with Mycobacterium tuberculosis. Infect. Immun. 63, 3231–3234 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Krieg, A. M., LoveHoman, L., Yi, A. K. & Harty, J. T. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocyto genes challenge. J. Immunol. 161, 2428–2434 (1998).

    CAS  PubMed  Google Scholar 

  15. Lai, W. C., Pakes, S. P., Ren, K., Lu, Y. S. & Bennett, M. Therapeutic effect of DNA immunization of genetically susceptible mice infected with virulent Mycoplasma pulmonis. J. Immunol. 158, 2513–2516 (1997).

    CAS  PubMed  Google Scholar 

  16. Johnston, S. A. & Barry, M. A. Genetic to genomic vaccination. Vaccine 15, 808–809 (1997).

    Article  CAS  Google Scholar 

  17. Lowrie, D. B., Silva, C. L., Colston, M. J., Ragno, S. & Tascon, R. E. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15, 834–838 (1997).

    Article  CAS  Google Scholar 

  18. Matsumoto, S. et al. Cloning and sequencing of a unique antigen MPT70 from Mycobacterium tuberculosis H37Rv and expression in BCG using E-coli Mycobacteria shuttle vector. Scand. J. Immunol. 41, 281–287 (1995).

    Article  CAS  Google Scholar 

  19. Hewinson, R. G., Michell, S. L., Russell, W. P., McAdam, R. A. & Jacobs, W. R. Molecular characterization of MPT73: a seroreactive antigen of Mycobacterium tuberculosis with homology to MPT70. Scand. J. Immunol. 43, 490–499 (1996).

    Article  CAS  Google Scholar 

  20. Trinchieri, G. Immunobiology of interleukin-12. Immunol. Res. 17, 269–278 (1998).

    Article  CAS  Google Scholar 

  21. Flynn, J. L. et al. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J.Immunol. 155, 2515–2524 (1995).

    CAS  PubMed  Google Scholar 

  22. Cooper, A. M., Magram, J., Ferrante, J. & Orme, I. M. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med. 186, 39–45 (1997).

    Article  CAS  Google Scholar 

  23. deJong, R. et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280, 1435–1438 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Mitchison, D. A. The action of antituberculosis drugs in short-course chemotherapy. Tubercle 66, 219–225 (1985).

    Article  CAS  Google Scholar 

  25. McCune, R. M., Feldmann, F. M., Lambert, H. P. & McDermott, W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123, 445–468 (1966).

    Article  CAS  Google Scholar 

  26. Wiegeshaus, E., Balasubramanian, V. & Smith, D. W. Immunity to tuberculosis from the perspective of pathogenesis. Infect. Immun. 57, 3671–3676 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, P. G. & Moss, A. R. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 47–59 (American Society for Microbiology, Washington DC, (1994).

    Book  Google Scholar 

  28. Tascon, R. E. et al. in Vaccine Design: The Role of Cytokine Networks (eds Gregoriadis, G., McCormack, B. & Allison, A. C.) 181–185 (Plenum, New York, (1997).

    Book  Google Scholar 

  29. Chapman, B. S., Thayer, R. M., Vincent, K. A. & Haigwood, N. L. Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Res. 19, 3979–3986 (1991).

    Article  CAS  Google Scholar 

  30. Schultz, J., Pavlovic, J., Strack, B., Nawrath, M. & Moelling, K. Long-lasting anti-metastatic efficiency of IL-12-encoding plasmid DNA. Hum. Gene Ther. (in the press).

Download references

Acknowledgements

This study was supported in part by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP) and World Health Organization (WHO) Global Programme for Vaccination and Immunization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celio L. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowrie, D., Tascon, R., Bonato, V. et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 400, 269–271 (1999). https://doi.org/10.1038/22326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22326

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing