Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seeing a single photon without destroying it


Light detection is usually a destructive process, in that detectors annihilate photons and convert them into electrical signals, making it impossible to see a single photon twice. But this limitation is not fundamental—quantum non-demolition strategies1,2,3 permit repeated measurements of physically observable quantities, yielding identical results. For example, quantum non-demolition measurements of light intensity have been demonstrated4,5,6,7,8,9,10,11,12,13,14, suggesting possibilities for detecting weak forces and gravitational waves3. But such experiments, based on nonlinear optics, are sensitive only to macroscopic photon fluxes. The non-destructive measurement of a single photon requires an extremely strong matter–radiation coupling; this can be realized in cavity quantum electrodynamics15, where the strength of the interaction between an atom and a photon can overwhelm all dissipative couplings to the environment. Here we report a cavity quantum electrodynamics experiment in which we detect a single photon non-destructively. We use atomic interferometry to measure the phase shift in an atomic wavefunction, caused by a cycle of photon absorption and emission. Our method amounts to a restricted quantum non-demolition measurement which can be applied only to states containing one or zero photons. It may lead to quantum logic gates16 based on cavity quantum electrodynamics, and multi-atom entanglement17.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of our atom interferometer, which can detect single photons.
Figure 2: Preparing and detecting one photon.
Figure 3: Measuring a photon twice.


  1. Braginsky, V. B. & Vorontsov, Y. I. Quantum mechanical limitations in macroscopic experiments and modern experimental techniques. Usp. Fiz. Nauk. 114, 41–53 (1974) [Sov. Phys. Usp. 17, 644–650 (1975]).

    Google Scholar 

  2. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (ed. Thorne, K. S.) (Cambridge Univ. Press, (1992).

    Book  Google Scholar 

  3. Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum mechanical oscillator I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980).

    Article  ADS  Google Scholar 

  4. Grangier, P., Levenson, A. L. & Poizat, J. P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Levenson, M. D., Shelby, R. M., Reid, M. & Walls, D. F. Quantum non-demolition detection of optical quadrature amplitudes. Phys. Rev. Lett. 57, 2473–2476 (1986).

    Article  ADS  CAS  Google Scholar 

  6. La Porta, A., Slusher, R. E. & Yurke, B. Back-action evading measurements of an optical field using parametric down-conversion. Phys. Rev. Lett. 62, 28–31 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Friberg, S. R., Machida, S. & Yamamoto, Y. Quantum non-demolition measurement of the photon number of an optical soliton. Phys. Rev. Lett. 69, 3165–3168 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Roch, J. F., Roger, G., Grangier, P., Courty, J. M. & Reynaud, S. Quantum non-demolition measurements in optics: a review and some recent experimental results. Appl. Phys. B 55, 291–297 (1992).

    Article  ADS  Google Scholar 

  9. Poizat, J. P. & Grangier P. Experimental realisation of a quantum optical tap. Phys. Rev. Lett. 70, 271–274 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Pereira, S. F., Ou, Z. Y. & Kimble, H. J. Back-action evading measurements for quantum non-demolition detection and quantum optical tapping. Phys. Rev. Lett. 72, 214–217 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Quantum non-demolition measurements. Appl. Phys. B 64(suppl.), 123–272 (1997).

  12. Roch, J. F. et al. Quantum non-demolition measurements using cold atoms. Phys. Rev. Lett. 78, 634–637 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Bencheick, K., Levenson, J. A., Grangier, P. & Lopez, O. Quantum non-demolition demonstration via repeated back-action evading measurements. Phys. Rev. Lett. 75, 3422–3425 (1995).

    Article  ADS  Google Scholar 

  14. Bruckmeier, R., Hansen, H. & Schiller, S. Repeated quantum non-demolition measurements of continuous optical waves. Phys. Rev. Lett. 79, 1463–1466 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Haroche, S. & Raimond, J. M. Cavity quantum electrodynamics. Sci. Am. 268, 54–62 (1993).

    Article  CAS  Google Scholar 

  16. Barenco, A., Deutsch, D. & Ekert, A. Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Haroche, S. Atoms and photons in high Q cavities: new tests of quantum theory. Ann. NY Acad. Sci. 755, 73–86 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Brune, M. et al. Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Rauch, H., Zeilinger, A., Badurek, G. & Wilfing, A. Verification of coherent spinor rotation of fermions. Phys. Lett. A 54, 425–427 (1975).

    Article  ADS  Google Scholar 

  20. Werner, S. A., Colella, R., Overhauser, A. W. & Eagen, C. F. Observation of the phase shift of a neutron due to the precession in a magnetic field. Phys. Rev. Lett. 35, 1053–1055 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Ramsey, N. F. Molecular Beams (Oxford Univ. Press, New York, (1985).

    Google Scholar 

  22. Brune, M., Haroche, S., Lefèvre, V., Raimond, J. M. & Zagury, N. Quantum non-demolition measurement of small photon numbers by Rydberg atom phase-sensitive detection. Phys. Rev. Lett. 65, 976–979 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Brune, M., Haroche, S., Raimond, J. M., Davidovich, L. & Zagury, N. Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non-demolition measurements and generation of Schrödinger cat states. Phys. Rev. A 45, 5193–5214 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Bragingsky, V. B. & Khalili, F. Ya. Quantum non-demolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996).

    Article  ADS  Google Scholar 

  25. Weidinger, M., Varcoe, B., Heerlein, R. & Walther, H. Trapping states in the micromaser. Phys. Rev. Lett. 82, 3795–3798 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Brune, M. et al. Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 77, 4887–4889 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Hagley, E. et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Maître, X. et al. Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997).

    Article  ADS  Google Scholar 

  29. Hulet, R. G. & Kleppner, D. Rydberg atoms in “circular” states. Phys. Rev. Lett. 51, 1430–1433 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Nussenzveig, P. et al. Preparation of high principal quantum numbers “circular” states of rubidium. Phys. Rev. A 48, 3991–3994 (1993).

    Article  ADS  CAS  Google Scholar 

Download references


Laboratoire Kastler Brossel is a Unité Mixte de Recherches of Ecole Normale Supérieure, Université P. et M. Curie, and Centre National de la Recherche Scientifique. This work was supported by the Commission of the European Community.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Haroche.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nogues, G., Rauschenbeutel, A., Osnaghi, S. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing