Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single kinesin molecules studied with a molecular force clamp

Abstract

Kinesin is a two-headed, ATP-driven motor protein that moves processively along microtubules in discrete steps of 8 nm, probably by advancing each of its heads alternately in sequence1,2,3,4. Molecular details of how the chemical energy stored in ATP is coupled to mechanical displacement remain obscure. To shed light on this question, a force clamp was constructed, based on a feedback-driven optical trap capable of maintaining constant loads on single kinesin motors5. The instrument provides unprecedented resolution of molecular motion and permits mechanochemical studies under controlled external loads. Analysis of records of kinesin motion under variable ATP concentrations and loads revealed several new features. First, kinesin stepping appears to be tightly coupled to ATP hydrolysis over a wide range of forces, with a single hydrolysis per 8-nm mechanical advance. Second, the kinesin stall force depends on the ATP concentration. Third, increased loads reduce the maximum velocity as expected, but also raise the apparent Michaelis–Menten constant. The kinesin cycle therefore contains at least one load-dependent transition affecting the rate at which ATP molecules bind and subsequently commit to hydrolysis. It is likely that at least one other load-dependent rate exists, affecting turnover number. Together, these findings will necessitate revisions to our understanding of how kinesin motors function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Operation of the force clamp.
Figure 2: Michaelis–Menten kinetics under load.
Figure 3: Load dependence of motility.
Figure 4: Displacement fluctuations.

References

  1. 1

    Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Visscher, K. & Block, S. M. Versatile optical traps with feedback control. Methods Enzymol. 298, 460–489 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA 94, 8539–8544 (1997).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Meyhöfer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    ADS  Article  Google Scholar 

  14. 14

    Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Topics Quantum. Electron. 2, 1066–1076 (1996).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Svoboda, K. & Block, S. M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1996).

    Article  Google Scholar 

  18. 18

    Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Howard, J. The mechanics of force generation by kinesin. Biophys. J. 68, 245s–255s (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Hackney, D. Kinesin ATPase: Rate-limiting ADP release. Proc. Natl Acad. Sci. USA 85, 6314–6318 (1988).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Ma, Y. Z. & Taylor, E. W. Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242–13251 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Svoboda, K., Mitra, P. P. & Block, S. M. Fluctuation analysis of motor protein movement and single enzyme kinetics. Proc. Natl Acad. Sci. USA 91, 11782–11786 (1994).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Schnitzer, M. J. & Block, S. M. Statistical kinetics of processive enzymes. Cold Spring Harbor Symp. Quant. Biol. 60, 793–802 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Samuel, A. D. T. & Berg, H. C. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71, 918–923 (1996).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Leibler, S. & Huse, D. A. Porters versus rowers: a unified stochastic model of motor proteins. J. Cell Biol. 121, 1357–1368 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Peskin, C. & Oster, G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202s–211s (1995).

    Google Scholar 

  28. 28

    Duke, T. & Leibler, S. Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J. 71, 1235–1247 (1996).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Derényi, I. & Vicsek, T. The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl Acad. Sci. USA 93, 6775–6779 (1996).

    ADS  Article  Google Scholar 

  30. 30

    Astumian, R. D. Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Higuchi, H. & Yanagida, T. Force generation and detachment of single kinesin molecules activated by laser photolysis of caged ATP and ADP. Cell Struct. Funct. 23, suppl., 198 (1998).

    Google Scholar 

  32. 32

    Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA 93, 1913–1917 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Inoue, M. Nishiyama, L. Satterwhite and M. Wang for discussions; J. de Georgis for squid dissection; and D. Peoples for machining. This work was supported by grants to S.M.B. from the NIGMS, NSF and W. M. Keck Foundation, predoctoral fellowships to M.J.S. to the American Heart Association, the Charlotte Elizabeth Proctor Fund, and the Program in Mathematics and Molecular Biology Burroughs Wellcome Fund, and a postdoctoral fellowship to K.V. from the Burroughs Wellcome Fund of the Life Sciences Research Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark J. Schnitzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Visscher, K., Schnitzer, M. & Block, S. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999). https://doi.org/10.1038/22146

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing