
© 1968 Nature Publishing Group

NATURE, VOL. 220. NOVEMBER 16. 1968 

allowing us to use their cold room, and Mr R. \Vegman 
of the department for his assistance. 

J. L. BROWNSCOMBE 
N. S. C. THORNDIKE 

Radiophysics Laboratory, 
CSIRO, 
Sydney, Australia. 

Received August 19; revised September 30,1968. 

1 Koenig, L. R., J. Atmos. &i.,20, 29 (1963). 
, Dye, .J. E., and Hobbs, P. V., Nature, 209, 464 (1966). 
'Dye, .J. E., and Hobbs, P. V., J. Atmos. Sci., 25, 82 (1968) . 
• Johnson, D. A., and Hallett, J., Quart. J. Roy. Metcorol. Soc. (in the press). 
'J"ohnson, D. A., thesis, llO, Univ. London (1967). 
6 Brownscombe, .T. L., and Thorndike, N. S. C., Proc. Intern. Cloud Phys. 

Coni., Toronto (1968). 

Melting Point Behaviour of 
Glacier Ice 
IN their communication!, Radd and Oertle draw atten
tion to the modified Clapeyron equation 

dT 

dP 
T(Vice) 

t:..Hfusion ( 1) 

in connexion with the depression of the freezing point of 
glacier ice. Their account, however, is too general. Their 
use of the term "unconfined" in relation to the liquid 
phase can be misunderstood by glaciologists and geologists. 

The essential point in equation (1) is that it gives the 
freezing point depression t:..T when the ice and water are 
under different pressures. A more appropriate general 
form of the equation is2 

t:..T = -(Vice t:..Pice - Vwater t:..Pwater) T 

t:..Hfnsion 
(2) 

Equally important are the circumstances making an 
equation of this type relevant. For the present case of 
glacier ice in contact with unfrozen saturated soils, it is 
the restriction of size (which can be considered a curvature) 
imposed on the ice-water interfaces by the walls of soil 
pores, together with the effect of interfacial tension, that 
is important. If the ice-water interfaces have a radius r 

P 
2 (Jice-water 

Pice - water = (3) 
r 

For an ice mass in contact with unfrozen soil, r may have 
a value between infinity and rpore (the equivalent radius 
of soil pores), depending on the extent to which the ice
water interfaces intrude into surface pores. The depression 
of the freezing point t:..T is given" by (for simplicity taking 
the case of constant Pwater) 

t:..T = - Vice 2 (Jice-waterT 

rt:..Hfusion 
(4) 

The temperature at the base of the glacier on a bed of un
frozen soil may, according to this equation, have a range 
of values, the lowest depending on rpore. Thus t:..T is 
limited by the type of soil in question. It was through 
overlooking this fact that Poynting' failed to establish 
equation (1) experimentally. 

The soil below the glacier freezes when r~rpore. Using 
appropriate values in equation (3) for, say, a silty clay 
with rpore = 0·3fL one finds that Pice - Pwater ;:: 2 kg cm-" 
is a condition for freezing of the soil. If this is not already 
satisfied, with the groundwater pressure being Pwater, 
freezing temperatures at the base of the glacier will cause 
a fall in water pressure at this point. There may be an 
associated migration of water to give an additional layer 
of basal ice, as in the frost heave process. Pice - Pwater is 
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an effective stress (in soil mechanics terminology) and 
of importance for the subsequent post-glacial, mechanical 
properties of the soil. 

On the other hand, if the glacier rests on a rock bed 
containing water only in cracks (larger than pore size), 
there is no significant difference in pressure according 
to equation (3). Thus the freezing point depression is then 
given by the "normal" relation 

dT 

dP 
'1'( Vwater Vice) 

t:..Hfusion 
(5) 

Detailed experimental studies of the matters discussed 
with reference to soils have been made by me5 and by 
other authors. Only scant attention has been given, 
however, to the significance of these relations in glaciology, 
wherc movement of the ice is a further complication. They 
seem important for questions not only of glacier regime 
but also of geotechnical properties of soils at some time 
overlain by glaciers. 

A slip is noted in Radd and Oertle's reference to Hud
son's paper, which is given below·. 
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Dynamics of the Disintegration of a 
Drop by Electrical Forces 
TECHNIQUES have recently been developed for modelling 
the dynamics of the flow of incompressible fluids using a 
high-speed computer!'·. The dynamical equations were 
solved by representing the fluid by a series of marker 
particles moving in a cartesian mesh, and assuming that 
each particle experiences a linear acceleration during a 
selected short interval of time. By computing the new 
positions and velocities of the marker particles at the end 
of successive time intervals, accurate calculations can be 
made of the motion of the fluid throughout the period of 
intercst. This marker-and-cell technique has been applied 
to a study of the instability of an uncharged liquid drop 
of radius R and surface tension T situated in an electric 
field strength E. This problem, which is important in 
certain situations in cloud physics", has previously been 
treated analytically' by assuming that the drop retains a 
spheroidal shape throughout the period of deformation 
until the instability point is attained. The calculated 
instability criteria, namely, the E(R/T)t = 1·625 when the 
ratio of the semi-major to semi-minor axes alb = 1'9, agree 
well with experimental measurements. The present 
numerical calculations permit a quantitative assessment 
to be made of the validity of the spheroidal assumption 
and, of greater importance, provide a description of the 
dynamics of the disintegration of a drop subjected to 
intense electrical forces. In order to save computer time 
the initial condition was assumed to be that a spheroidal 
drop of undistorted radius 0·2 cm and surface tension 
70 dynes cm-I, possessing a degree of deformation repre
sented by alb = 1'9, was introduced into a field of strength 
E = 9,500 V cm-I, which is 4 per cent greater than the 
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