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The occurrence of fracture at a definite angle to the 
transverse plane could be accounted for in terms of the 
variation of the inherent strength of the material with 
direction. It is only necessary to assume that the rate of 
decrease of the inherent strength as this angle increases 
is greater than the rate of decrease of the normal com
ponent of stress across the plane considered. 

J. W. CURTIS 

L. R. G. TRELOAR 

Department of Polymer and 
Fibre Science, 
University of Manchester Institute 
of Sci once and Technology. 

Received July 16; revised August 22, 1968. 

Fracture in Bending, Torsion and 
Radial Pressure 
I HA VE shown 1 that glass rods with normally damaged 
surfaces, and subjected to sustained loading, fracturn in 
equal times when subjected to numerically equal prior 
principal stresses, in bending, torsion and radial fluid 
pressure. The term prior stress refers to the stress distribu
tion which exists before any cracking has occurred. I 
interpreted these results in terms of quasistatic crack 
growth with consequent increase in the stress concentra
tion at the ends of the cracks, and I now re-int;crpret 
them in terms of work based fracture m echanics theory. 

FigR. 1-3 represent a cracked body in three states of 
loading. X is the external force and u tho relative cor
responding displacement. In Fig. 2 the prior stress (cr) 
is applied so as to open the crack. In :Fig. 3 the reversed 
prior stress is applied so as to keep the crack closed. 

Applying the reciprocal theorem to the linearly elastic 
body we have 

A 
Figs. 1 and 2: Xu 2 = JcrdAe1 ( 1) 

' 
A 

Figs. 2 and 3: 0 = Xu2 - JcrdAe 2 (2) . 
A 

Fig;;. l and 3: X11a = Xu 1 - [crdAe 1 (:-l) 

where dA is an element of area of one side of the crack 
surface and e is the relative displacement in the direct-ion 

Fig. 1 Fig. 2 Fiµ. 3 

Figs. 1-3. A cracked body in thrne states of loading. 

of the prior stress of corresponding points on the crack 
surface. 

From equations ( l) and (2) we see that e1 = e2 • The 
strain energy under loading 1 is 1/2 Xu 1 and from equa
tion (3) we soo that 

1 l 1 A 

2 Xu,= 2 Xu 3 + 2I crdAe 1 (4) 

Using equation (2.8) of ref. 2, quasistatic crack growth 
under loading l gives 

R = (°Ei) 
Mx 

(5) 
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where E I is the strain energy in state 1 and R is the fracture 
t,oughness. 

Now tho stress system and hence the strain energy in 
loading 3 is invariable with the crack arna (at constant X). 

Applying equation (5) we see that fo1· a linearly elastic 
body 

(6) 

e, tends to zero at the crack ends, so equation (6) can be 
rewritten 

.4 

1 J (oe,) R = - cr - dA. 
2 

0 
oA X 

(7) 

lt should bo noted that equations (6) and (7) are valid 
only when the distribution of external loading, if any, on 
the crack surface is invariant wit,h orack area. They a re 
not, valid for a crack subjcct,ed to fluid pressure. 

Applying equation (7) to circular glass rods cont.aining 
crackR so small that tho prior stress across tho crack faces 
in bending and torsion is sensibly constant, we see that 
the prior principal stresses across the crack faces will be 
equal to an order of accuracy to which (oe1/ 0A)x is equal 
for tho two loading systems. In the torsion system, equal 
and opposite prior stresses ±cr exist,, the negative st,ress 
being applied parall el to tho crack. To the order of 
a.ccuracy to which this negative stress is without influence 
on the cra,ck opening, we deduce that 

cr (torsion) = cr (bending) 

in agreement. with the exp erinrnnt.s. 
A state of radial fluid pressure (p) can be regarded as 

a state of isotropic pressure, on which is superimposed 
an axial tensile stress, numerically equal to the pressure . 
Under isotropic fluid pressure, t,he strain energy is in
variant with the crack area, so that the only contribution 
(E,) to the right-hand side of equation (7) comes from the 
tensile stress system. Thus 

> 0 
.R = a.A (E,)p (8) 

where E, is the strain energy as,;ociated with a uniform 
axial tensile stress numerically equal t,o p. 

Thus fracture under radial fluid pressure should occur 
when the pressure is numerically equal to the uniform 
axial tensile stress to produce fracture. This deduction 
is true for cracks of any size. For cracks so small that 
prior stress variation in bending is negligible over the 

X U.1 

crack area, we deduce that fracture in 
bending and tension should occur at tho 
same prior principal stresses, provided 
statistical effects of crack distribution size 
arc unimportant. Thus the experimental 
results are consistent with work based on 
fracturn mochanics. 

In my earlier communication' I attrib
uted delayed fracture of glass to gradual 
crack growth under stress. Shand3 has in
terpreted such crack growth in terms of 

variation of R with time rate of increase of crack area. 
For the small cracks with which these experiments are 
concerned, quasistatic orack growth entails2 

dR ~- dR R 

dC = ~ d~ = c (9) 

where 2c is a typical crack dimension. When this condi
tion fails unstable cracking ensues. 
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