amoebae, trypanosomes and haernatozoa of fish, reptiles and amphibia as well as of mammals; as a biologist, he traced their evolution and relationships in schemes which are still in use; as a physiologist, he unravelled the functions of the parabasal bodies and the kinetoplast of flagellates; and, as a tropical pathologist, he was among the first to study parasitic eosinophilia-the "Curve of Lavier" representing four phases in the development of helminthic infections-and the little known cardiac complications of sleeping sickness. As a zoologist, he studied the natural parasites of invertcbrates; as a medical man, he observed the parasites of human infections in the invertebrate vectors.
Lavier's work was characterized by fine and careful tochnique. This enabled him to trace the route of migrations of the polymorphic trypanosomes to their final destination in the salivary glands of the tsetse flies; his observations on these organisms were largely made during the course of a prolonged visit to Uganda in 1927 and 1928.

Wenyon, Brumpt and Lavier were masters of parasitology and, with the death of the last, an era in European parasitology seems to have come to an end.

University News

Dr C. M. Anderson, Royal Children's Hospital Research Foundation, Melbourne, has been appointed to the chair of paediatrics and child health in the Faculty of Medicine and Dentistry, University of Birmingham. Mr H. Maddick has been appointed to the chair of local government studies, and Professor A. P. D. Thomson, University College of Rhodesia, to the newly established full-time post of executive dean in the Faculty of Medicine and Dentistry. The title of honorary professor of medicine of the tropics in the Department of Medicine has been conferred on Dr H. V. Morgan.
Dr R. T. Severn has been appointed to the chair of civil engineering and headship of the Department of Civil Engineering in the University of Bristol on the retirement of Professor Alfred Pugsley.
Dr D. H. Jennings, University of Leeds, has been appointed to the second chair of botany in the University of Liverpool.
Mr R. H. Macmillan, director of the Motor Industry Research Association, has been appointed industrial professor, and Mr F. D. Hales, also of the Motor Industry Research Association, has been appointed professor of surface transport, both in the Department of Transport Technology at Loughborough University of Technology. Dr D. Johns, reader in aeronautical engineering in the Department of Transport Technology, has been appointed to a personal chair in the same department; and Mr K. J. Hume, reader in production technology in the Department of Industrial Engineering and Management, has been appointed to a personal chair in that department.
Dr J. N. Walton has been appointed to a personal chair of neurology and Dr D. G. Armstrong to a personal chair of agricultural biochemistry in the University of Newcastle upon Tyne.

Appointments

Dr G. F. Claringbull has been appointed director of the British Museum (Natural History) as from December 1 on the retirement of Sir Terence Morrison-Scott. The following appointments have also been made: Mr R. Ross to be a deputy chief scientific officer; Dr P. Freeman to be keeper of entomology; and Dr D. R. Ragge to be deputy keeper of entomology and a senior principal scientific officer.

Erratum. The publisher of the book The Heart of the Earth (reviewed in Nuture, 219, 655; 1968) is Freeman, Cooper and Co., not Freeman as stated.

Erratum. In the article "Arrangement of the Continents during the Palaeozoic Era" by K. M. Creer (Nature, 219. 41 ; 1968) the first four tables should have been as follows:

Pole No.	Period	Source	Lat.	South P Long.	$\begin{aligned} & \text { ole } \\ & \text { Alpha } \\ & 95 \end{aligned}$
$S A \overline{3}$	Cambrian to Lower	Mean of Lower Palae-	$8^{\circ} \mathrm{N}$	$45^{\circ} \mathrm{W}$	15°
SA $6 a$	Lower Carboniferous	Pole 6(i) ref. 2	$28^{\circ} \mathrm{S}$	$34^{\circ} \mathrm{W}$	-
SA 6c	Permo-Carbon-	Mean of poles 6(ii) and			
SA 10	Cretaceous	Pole 10(i) ref. 2	${ }^{65} 8^{\circ} \mathrm{S}$	$\begin{aligned} & 13^{\circ} \mathrm{W} \\ & 54^{\circ} \mathrm{E} \end{aligned}$	二

Table 2. african mean poles

Pole	Period	Source	South Pole			
No.	Perlod	Source	Lat.		$1 \text { pha }$	N
$A F_{2}$	Cambrian-Ordovician	Mean of poles $B 1$ and $B 2$ ref 6				,
$A F 6 a$	Lower Carboniferous	Pole B4 ref. 6	$26^{\circ} \mathrm{S}$	$26^{\circ} \mathrm{E}$		1
$A F 6 b$	Upper Carbon-	Pole $B 5$ ref. 6	$45^{\circ} \mathrm{S}$	$40^{\circ} \mathrm{E}$	-	1
AF7a	Lowerous Lermian	Pole B6 ref. 6	$27^{\circ} \mathrm{S}$	$89^{\circ} \mathrm{E}$	-	1
$A F 6 c$	Permo-Carbon- iferous	Mean of poles B5 and $B 6$ equivalent to pole 7(ii) ref. 2	$38^{\circ} \mathrm{S}$	$76^{\circ} \mathrm{E}$	-	3
$\boldsymbol{A F} \overline{9}$	Triassic to Cretaceous	Mcan of poles $B 7$ to B15 ref. 6	$64^{\circ} \mathrm{S}$	$81^{\circ} \mathrm{E}$	5°	9
$A F 11$	Tertiary	Mean of poles B18 and B19 ref. 6	$78^{\circ} \mathrm{S}$	$43^{\circ} \mathrm{W}$	-	2

Table 3. australian mean poles

Pole	Period	Source	South Pole			
No.	Period	source	Lat.		$\begin{aligned} & \text { Alpha } \\ & 95 \end{aligned}$	N
$A U^{2}$	Cambrian	Mean of poles $C 1$ and C2 ref. 6	$35^{\circ} \mathrm{S}$	$21^{\circ} \mathrm{E}$		2
$A U 6 a$	Lower Carbonifer-ous-Upper Devonian	Mean of poles C4 to C7 ref. 6			11°	4
$A U 6 c$	Middle-Upper Carboniferous	Pole C8 ref 6	$73^{\circ} \mathrm{S}$	$147^{\circ} \mathrm{E}$	-	1
$A \cup 7$	Permo-Carboniferons	Mean of poles C9 to C14 ref 6	$46^{\circ} \mathrm{S}$	$133^{\circ} \mathrm{E}$	$7{ }^{\circ}$	6
$A U 9$	Triassic to Cretaceous	Mean of poles C15 to C23 Ief. 6	$50^{\circ} \mathrm{S}$	$149^{\circ} \mathrm{E}$	6°	9
$A U 11$	Tertiary	Mean of poles B16 and $B 17$ ref. 6	$93^{\circ} \mathrm{S}$	$139^{\circ} \mathrm{E}$	-	2

Table 4. eurasian mean poles

			South Pole			
Pole No.	Period	Source	Lat.	Long.	${ }_{95}^{\text {Alpha }}$	N
$E U 2$	Cambrian	Eastern USSR Rodio-			15°	6
EU 3	Ordovician	novref. 7	$27^{\circ} \mathrm{N}$	$51^{\circ} \mathrm{W}$	6°	6
EU 4	Silurian	", ", ",	$23^{\circ} \mathrm{N}$	$42^{\circ} \mathrm{W}$		3
$E \cup 5 a$	Lower Devonian	Midland Vैalley" Lavas ref. 5	$10^{\circ} \mathrm{N}$	$38^{\circ} \mathrm{W}$		1
EU 6	Carboniferous	Pole 6 iv ref. 2	$35^{\circ} \mathrm{S}$	$34^{\circ} \mathrm{W}$	9°	25
EU 7	Permian	Pole 7 iv ref. 2	$44^{\circ} \mathrm{S}$	$17^{\circ} \mathrm{W}$	4°	24
EU 8	Triassic	Pole 8 iv ref. 2	$50^{\circ} \mathrm{S}$	$33^{\circ} \mathrm{W}$	4°	17
EU 11	I'ertiary	Pole 11 iv 'ref. 2	$78^{\circ} \mathrm{S}$	$31^{\circ} \mathrm{W}$	6°	13

In Fig. 4 the pole AF6d should be labelled AF7a. In Fig. 5 the pole labelled AF6a in black should be labelled AF 66 .

CORRESPONDENCE

Exploiting and Polluting Oceans

Sir,-Hamlet knew a hawk from a handsaw (Act 2, sceno 2).

Doosn't Nature know a gull from a guillemot? (Nature, 219, 840; 1968).

Yours, etc.,
L. Harrison Mattiews.

Stansfield, via Sudbury, Suffolk.

