Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells

Abstract

The malaria parasite Plasmodium falciparum is one of the most successful human pathogens. Specific virulence factors remain poorly defined, although the adhesion of infected erythrocytes tothe venular endothelium has been associated with some of thesyndromes of severe disease1. Immune responses cannot prevent the development of symptomatic infections throughout life, and clinical immunity to the disease develops only slowly during childhood. An understanding of the obstacles to the development of protective immunity is crucial for developing rational approaches to prevent the disease. Here we show that intact malaria-infected erythrocytes adhere to dendritic cells, inhibit the maturation of dendritic cells and subsequently reduce their capacity to stimulate T cells. These data demonstrate both a novel mechanism by which malaria parasites induce immune dysregulation and a functional role beyond endothelial adhesion for the adhesive phenotypes expressed at the surface of infected erythrocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of surface markers on dendritic cells in response to LPS.
Figure 2: Only cytoadherent parasite lines inhibit dendritic-cell maturation.
Figure 3: Transmission electron micrographs illustrating the interaction of dendritic cells with infected erythrocytes.
Figure 4: Dendritic cells (DC) exposed to intact infected erythrocytes are poor stimulators of primary T-cell responses.
Figure 5: Dendritic cells exposed to intact infected erythrocytes are poor stimulators of secondary T-cell responses.

Similar content being viewed by others

References

  1. MacPherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am. J. Pathol. 119, 385–401 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hill, A. V. et al . Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–439 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Marsh, K. et al . Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans. R. Soc. Trop. Med. Hyg. 83, 293–303 (1989).

    Article  CAS  Google Scholar 

  4. Brown, K. N. Antigenic diversity, antigenic variation and merozoite surface protein 1. Parassitologia 35, Suppl., 13–15 (1993).

    PubMed  Google Scholar 

  5. Roberts, D. J. et al . Rapid switching to multiple and adhesive phenotypes in malaria. Nature 357, 689–692 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Gilbert, S. C. et al . Association of malaria parasite population structure, HLA, and immunological antagonism. Science 279, 1173–1177 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Austyn, J. M. Dendritic cells. Curr. Opin. Hematol. 5, 3–15 (1998).

    Article  CAS  Google Scholar 

  9. Sallusto, S., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  Google Scholar 

  10. Smith, J. D. et al . Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995).

    Article  CAS  Google Scholar 

  11. Roberts, D. D. et al . Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature 318, 64–66 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Barnwell, J. W. et al . Ahuman 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J. Clin. Invest. 84, 765–772 (1989).

    Article  CAS  Google Scholar 

  13. Berendt, A. R. et al . The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1-binding site. Cell 68, 71–81 (1992).

    Article  CAS  Google Scholar 

  14. Coppel, R. L., Cooke, B. M., Magowan, C. & Narla, M. Malaria and the erythrocyte. Curr. Opin. Hematol. 5, 132–138 (1998).

    Article  CAS  Google Scholar 

  15. Zhou, L. J. & Tedder, T. F. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol. 154, 3821–3835 (1995).

    CAS  PubMed  Google Scholar 

  16. Gardner, J. P., Pinches, R. A., Roberts, D. J. & Newbold, C. I. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 93, 3503–3508 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Udeinya, I. J., Schmidt, J. A., Aikawa, M., Miller, L. H. & Green, I. Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science 213, 555–557 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Plebanski, M., Saunders, M., Burtles, S. S., Crowe, S. & Hooper, D. C. Primary and secondary human in vitro T cell responses to soluble antigens are mediated by subsets bearing different CD45 isoforms. Immunology 75, 86–90 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagvekar, N. et al . Apathogenic role for the thymoma in myasthenia gravis. Autosensitization of IL-4-producing T-cell clones recognizing extracellular acetylcholine receptor epitopes presented by minority class II isotyes. J. Clin. Invest. 101, 2268–2277 (1998).

    Article  CAS  Google Scholar 

  20. Williamson, B. A. & Greenwood, B. M. Impairment of the immune response to vaccination after acute malaria. Lancet 1, 1328–1329 (1978).

    Article  CAS  Google Scholar 

  21. Greenwood, B. M., Bradley, A. K., Blakebrough, I. S. & Whittle, H. C. The immune response to a meningococcal polysaccharide vaccine in an African village. Trans. R. Soc. Trop. Med. Hyg. 74, 340–346 (1980).

    Article  CAS  Google Scholar 

  22. Walsh, D. S., Looareessuwan, S., Vaninangonata, S., Virvan, C. & Webster, H. K. Cutaneous delayed-type hypersensitivity responsiveness in patients during and after Plasmodium falciparum and Plasmodium vivax infections. Clin. Immunol. Immunopathol. 77, 89–94 (1995).

    Article  CAS  Google Scholar 

  23. Newbold, C. et al . Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 57, 389–398 (1997).

    Article  CAS  Google Scholar 

  24. Howard, R. W. & Barnwell, J. W. Role of surface antigens on malaria-infected red blood cells in evasion of immunity. Contemp. Top. Immunobiol. 12, 127–200 (1984).

    CAS  PubMed  Google Scholar 

  25. Langreth, G. E. & Peterson, E. Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infect. Immun. 47, 760–766 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilks, C. F., Walliker, D. & Newbold, C. I. Relationships between sequestration, antigenic variation and chronic parasitism in Plasmodium chabaudi chabaudi—a rodent malaria model. Parasite Immunol. 12, 45–64 (1990).

    Article  CAS  Google Scholar 

  27. Howard, R. J., Barnwell, J. W. & Kao, V. Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proc. Natl Acad. Sci. USA 80, 4129–4133 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Udomsanpetch, R., Thanikkul, K., Pukrittayakamee, S. & White, N. J. Rosette formation by Plasmodium vivax. Trans. R. Soc. Trop. Med. Hyg. 89, 635–637 (1995).

    Article  CAS  Google Scholar 

  29. Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976).

    Article  ADS  CAS  Google Scholar 

  30. Schwarzer, E., Turrini, F. & Arese, P. Aluminescence method for the quantitative determination of phagocytosis of erythrocytes, of malaria-parasitized erythrocytes and of malarial pigment. Br. J. Haematol. 88, 740–745 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. F. Tedder for the gift of anti-CD83 monoclonal antibody, D. Chao, P.Bahl, L. Corlett and K. Pulford for technical advice and C. Newbold, A. Vincent, B. C. Elford and S.Roberts for support and encouragement. D.J.P.F. was supported by the Wellcome Trust. D.J.R. is a Wellcome Trust Senior Fellow in Clinical Science and B.C.U. was supported by a Fellowship from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, B., Ferguson, D., Pain, A. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999). https://doi.org/10.1038/21900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21900

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing