Empirical Relation for the Isothermal Density Derivative of the Optical Dielectric Constant

FOR liquids, the Einstein theory¹ of light scattering, the Gans theory² of the Kerr effect and the Leontovitch theory³ of the Maxwell effect all require knowledge of the isothermal density derivative of the optical dielectric $\rho(\partial n^2/\partial \rho)_T.$ Experimental values of this constant. coefficient have been given for only a few liquids. In the past, resource has been made to dielectric equations of state, such as the Lorentz-Lorenz equation, which relate the dielectric constant to the density, in order to calculate this coefficient. Usually, the dielectric constant of a liquid is not a function of density only, however, but depends separately on pressure P and temperature T, so that the coefficients $(\partial n^2/\partial p)_{\rho}$ and $(\partial n^2/\partial T)_{\rho}$ are not zero⁴. For example, it has been shown⁵ that the use of the Lorentz-Lorenz equation in the Einstein light scattering equation may lead to errors of between 10 and 20 per cent.

Table 1. DENSITY DIFFERENTIALS

					$e\left(\frac{n^2}{20}\right)_T$				
	P					Lorontz-	This		
Liquid	bar	$T^{\circ} \subset$	λÅ	n	Eykman	Lorenz	work	Expt.	Ref.
Benzene	1	23	5460	1.503	1.61	1.79	1.62	1.65	5
	1	24	5893	1.499	1.60	1.77	1.60	1.58	4
••	125	24.8	5015	1.514	1.66	1.85	1.67	1.66	6
	125	24.8	4678	1.512	1.65	1.84	1.66	1.69	6
* 3	370	24.8	5086	1.523	1.70	1.90	1.72	1.74	6
	591	34.5	4678	1.545	1.80	2.03	1.83	1.78	6
	591	34.5	5016	1.540	1.80	2.02	1.82	1.76	6
	137	54.3	6678	1.482	1.52	1.67	1.52	1.53	6
Carbon tetra-									
chloride	137	24.8	6678	1.461	1.43	1.57	1.43	1.46	6
	400	24.8	5876	1.476	1.49	1.64	1.49	1.50	6
	591	34.5	4799	1.487	1.54	1.70	1.54	1.53	6
	938	34.5	6438	1.487	1.54	1.70	1.54	1.51	6
	125	54.3	6678	1.445	1.37	1.48	1.37	1.41	6
.,	125	54.3	4800	1.455	1.41	1.53	1.41	1.46	6
	1	23	5460	1.460	1.43	1.56	1.43	1.46	5
n-Hexane	ī	25	00	1.371	1.08	1.14	1.07	1.06	7
	2.000	25	00	1.483	1.34	1.45	1.33	1.33	7
	1	0	00	1.383	1.12	1.19	1.11	1.12	7
	2.000	Õ	00	1.443	1.36	1.47	1.85	1.35	7
.,	1	-25	00	1.398	1.18	1.26	1.17	1.17	7
	2.000	- 25	00	1.451	1.39	1.51	1.39	1.40	7
	-,000	- 50	00	1.411	1.23	1.32	1.22	1.22	7
•,	1.500	- 50	00	1.450	1.38	1.51	1.38	1.39	ż
Toluene	1,000	23	5460	1.499	1.60	1.77	1.59	1.58	5
Cyclohexar	e i	23	5460	1.426	1.29	1.39	1.28	1.29	5
Tso-octane	1	23	5460	1.391	1.15	1.23	1.14	1.15	5
w-Hexane	î	23	5460	1 374	1.09	1.15	1.08	1.08	5
n-Octane	1	28	5460	1.308	1.18	1.27	1.17	1.18	5
n-Decane	1	23	5460	1.413	1.94	1.33	1.93	1.26	5
n-Heya-	1	20	0100	1 110	1 41	1 00	1 20	1. 20	v
devane	1	23	5460	1.435	1.33	1.43	1.32	1.35	5
Carbon	-	4.9	0100	1 100	1 00	1 10	LOD	1 00	
disulphic	le 1	23	5460	1.634	2.21	2.60	9.39	9.37	5
ansarphic	1	22.6	5802	1.696	2.10	9.53	9.97	9.97	5
Methyl et	nyl-	22 0	0000	1 020	# 10	4 00	1	4 41	
ketone	1	93	5460	1.370	1.11	1.17	1.10	1.13	5
Ethyl ethe	r i	23.1	5803	1.351	1.00	1.05	0.00	0.080	4
Methyl	1 1	-0 T	0000	1 001	1 00	1 00	0 00	0 000	Ŧ
alcohol	7	99.8	5893	1.328	0.92	0.96	0.91	0.898	4
anonor	1	0	0000	1 040	0 02	0 00	0.01	0.000	-

To reduce these errors in the case of liquids for which $\rho(\partial n^2/\partial \rho)_T$ has not been measured, the available experimental data for common organic liquids have been used to provide an empirical relationship between $\rho(\partial n^2/\partial \rho)_T$ and n, both quantities being at the same temperature, pressure and wavelength. This relation is

$$\rho \left(\frac{\partial n^2}{\partial \rho}\right)_T = \frac{1}{30} (n^2 - 1)(23 + 7n^2)$$

and fits the experimental data to within about ± 1 per cent for most liquids for temperatures between -50° C and $+35^{\circ}$ C, pressures from 1 to 1,000 bars and over the whole visible spectrum, although sufficient data to test these extremes of range exist for only a few liquids. Static dielectric constant measurements on *n*-hexane also fit the empirical equation, where the dielectric constant is equated to n^2 . The measurements were made in the 100 kHz region, so the measurement wavelength is effectively infinite. The Lorentz-Lorenz equation

$$\left(\frac{n^2-1}{n^2+2}\right)^{\frac{1}{\rho}} = \text{const.}$$

and the Eykman equation

$$\left(\frac{n^2-1}{n+0\cdot 4}\right)^{\frac{1}{p}} = \text{const.}$$

yield density differentials of

$$\frac{1}{3}$$
 $(n^2-1)(n^2+2)$ and $\frac{2n(n^2-1)(n+0\cdot 4)}{1+n^2+0\cdot 8n}$

respectively, and these are compared with the proposed empirical formula and experimental values in Table 1. It can be seen that the Lorentz-Lorenz equation gives values of $\rho(\partial n^2/\partial \rho)_T$ which are about 8 per cent too high over the whole range, and the Eykman equation is valid only in the region near n = 1.5, being 3.3 per cent low at n = 1.6 and 2 per cent high at n = 1.35. The empirical equation may be integrated to provide a dielectric equation of state εt constant temperature, but such an equation of state must necessarily be approximate. It is rather the purpose of this communication to indicate a way of estimating density differentials of the optical dielectric constant to a better accuracy than has hitherto been attained.

G. H. MEETEN

Department of Physics, Sir John Cass College, London.

Received March 21, 1968.

¹ Einstein, A., Ann. Physik, 33, 1275 (1910).

² Gans, R., Z. Physik, 17, 353 (1923).

³ Leontovitch, M., J. Phys. USSR, 4, 499 (1941).

4 Raman, V., and Venkataraman, K. S., Proc. Roy. Soc., A, 171, 137 (1939).

⁵ Coumou, D. J., Mackor, E. L., and Hijmans, J., Trans. Faraday Soc., 60, 1539 (1964).

⁶ Waxler, B. M., Weir, C. E., and Schamp, H. W., J. Res. Nat. Bur. Stand., 68A, 489 (1964).

7 Mopsik, F. I., J. Res. Nat. Bur. Stand., 71 A, 287 (1967).

Isotope Shift in Crystal-field Splitting

MARSHALL et al.^{1,2} have demonstrated experimentally that the isotope shift in the crystal-field splittings of the magnetic ions doped in some host lattices, δD , is proportional to the mass difference of the isotopic magnetic ions and decreases with temperature. Based on the result that the phonon-induced crystal-field splitting is approximately proportional to the mean square displacement of the atoms³, I have shown⁴ that the isotope shift in the crystal-field splittings of two isotopic magnetic ions is approximately proportional to the difference between the mean square displacements of these two isotopes, $\langle u_6^* \rangle_1$ and $\langle u_6^* \rangle_2$

$$\delta D \propto \left(\langle u_0^2 \rangle_1 - \langle u_0^2 \rangle_2 \right) \tag{1}$$

In this communication, I shall try to use this result to explain the temperature dependence of the isotope shifts measured by Marshall *et al.*¹.

The Einstein model was successfully used by Montgomery to interpret⁵ the difference between the lattice constants of ⁶Li and ⁷Li. As a result, it could be assumed that the two doped isotopic magnetic ions in a host crystal vibrate with Einstein frequencies v_1 and v_2 . These frequencies are related to the masses of the isotopic magnetic ions, M'_1 and M'_2 , by the relations $v_i = b/(M_i)^{1/2}$, i = 1, 2, where b is the proportionality constant related to the force constant. In this case, the mean square displacement is found to be

$$\langle u_0^2 \rangle_i \propto \left[\frac{1}{2} + \frac{1}{\exp\left(h\nu_i/kT\right) - 1} \right], \quad i = 1, 2$$
 (2)