Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of the Invar effect in iron–nickel alloys

Abstract

In 1897 Guillaume1 discovered that face-centred cubic alloys of iron and nickel with a nickel concentration of around 35 atomic per cent exhibit anomalously low (almost zero) thermal expansion over a wide temperature range. This effect, known as the Invar effect, has since been found in various ordered and random alloys and even in amorphous materials2. Other physical properties of Invar systems, such as atomic volume, elastic modulus, heat capacity, magnetization and Curie (or Néel) temperature, also show anomalous behaviour. Invar alloys are used in instrumentation, for example as hair springs in watches. It has long been realized that the effect is related to magnetism2,3; but a full understanding is still lacking. Here we present ab initio calculations of the volume dependences of magnetic and thermodynamic properties for the most typical Invar system, a random face-centred cubic iron–nickel alloy, in which we allow for non-collinear spin alignments—that is, spins that may be canted with respect to the average magnetization direction. We find that the magnetic structure is characterized, even at zero temperature, by a continuous transition from the ferromagnetic state at high volumes to a disordered non-collinear configuration at low volumes. There is an additional, comparable contribution to the net magnetization from the changes in the amplitudes of the local magnetic moments. The non-collinearity gives rise to an anomalous volume dependence of the binding energy, and explains other peculiarities of Invar systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-consistent magnetic spin configurations of the f.c.c. Fe–Ni alloy at four different volumes.
Figure 2: Spin pair correlation functions between neighbouring spins in f.c.c. Fe–Ni at several atomic volumes (in a.u.).
Figure 3: Volume-dependence of ground-state properties of the Ni0.34Fe0.66 alloy.

Similar content being viewed by others

References

  1. Guillaume, C. E. Recherches sur les aciers au nickel. Dilatations aux temperatures elevees; resistance electrique. CR Acad. Sci. 125, 235–238 (1897).

    Google Scholar 

  2. Wasserman, E. F. in Ferromagnetic Materials Vol. 5 (eds Buschow, K. H. J. & Wohlfarth, E. P.) 237–322 (North-Holland, Amsterdam, (1990).

    Google Scholar 

  3. Weiss, R. J. The origin of the ‘Invar’ effect. Proc. R. Soc. Lond. A 82, 281–288 (1963).

    Google Scholar 

  4. Andersen, O. K., Madsen, J., Poulsen, U. K., Jepsen, O. & Kollar, J. Magnetic ground state properties of transition metals. Physica B 86–88, 249–256 (1977).

    Article  Google Scholar 

  5. Roy, D. M. & Pettifor, D. G. Stoner theory support for the two-state hypothesis for γ iron. J. Phys. F 7, L183–L187 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Moroni, E. G. & Jarlborg, T. Calculation of Invar anomalies. Phys. Rev. B 41, 9600–9602 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Moruzzi, V. L. High-spin and low-spin states in Invar and related alloys. Phys. Rev. B 41, 6939–6946 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Mohn, P., Schwarz, K. & Wagner, D. Magnetoelastic anomalies in Fe-Ni Invar alloys. Phys. Rev. B 43, 3318–3324 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Entel, P., Hoffmann, E., Mohn, P., Schwarz, K. & Moruzzi, V. L. First-principles calculations of the instability leading to the Invar effect. Phys. Rev. B 47, 8706–8720 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Johnson, D. D., Pinski, F. J., Staunton, J. B., Györffy, B. L. & Stocks, G. M. in Physical Metallurgy of Controlled Expansion Invar-Type Alloys (eds Russell, K. C. & Smith, D. F.) 3–24 (The Minerals, Metals & Materials Soc., Warrendale, Pennsylvania, (1990).

    Google Scholar 

  11. Akai, H. & Dederichs, P. H. Local moment disorder in ferromagnetic alloys. Phys. Rev. B 47, 8739–8747 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Johnson, D. D. & Shelton, W. A. in The Invar effect: A Centennial Symposium (ed. Wittenauer, J.) 63–74 (The Minerals, Metals & Materials Soc., Warrendale, Pennsylvania, (1997).

    Google Scholar 

  13. Abrikosov, I. A., Eriksson, O., Söderlind, P., Skriver, H. L. & Johansson, B. Theoretical aspects of the Fe c Ni1−c Invar alloys. Phys. Rev. B 51, 1058–1063 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Schröter, M. et al . First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B 52, 188–209 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  15. Schumann, F. O., Willis, R. F., Goodman, K. G. & Tobin, J. G. Magnetic instability of ultrathin fcc Fe x Ni1−x films. Phys. Rev. Lett. 79, 5166–5169 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Freeland, J. W., Grigorov, I. L. & Walker, J. C. Magnetic phase transition in epitaxial Ni1−x Fe x alloy thin films. Phys. Rev. B 57, 80–83 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Mryasov, O. N., Gubanov, A. V. & Liechtenstein, A. I. Spiral spin-density-wave states in FCC iron: Linear-muffin-tin-orbitals band-structure approach. Phys. Rev. B 45, 12330–12336 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Uhl, M., Sandratskii, L. M. & Kübler, J. Spin fluctuations in γ-Fe and in Fe3Pt Invar from local-density-functional calculations. Phys. Rev. B 50, 291–301 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Antropov, V. P., Katsnelson, M. I., van Schilfgaarde, M. & Harmon, B. N. Ab initio spin dynamics in magnets. Phys. Rev. Lett. 75, 729–732 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Antropov, V. P., Katsnelson, M. I., Harmon, B. N., van Schilfgaarde, M. & Kusnezov, D. Spin dynamics in magnets: equation of motion and finite temperature effects. Phys. Rev. B 54, 1019–1035 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Wang, Y. et al . Noncollinear magnetic structure in Ni0.35Fe0.65. J. Appl. Phys. 81, 3873–3875 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Pearson, W. B. A Handbook of Lattice Spacing and Structure of Metals and Alloys (Pergamon, London, (1967).

    Google Scholar 

  23. Ishikawa, Y., Noda, Y., Ziebeck, K. R. A. & Givord, D. Origin of hidden magnetic excitations in an Invar alloy Fe65Ni35. Solid State Commun. 57, 531–534 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Moruzzi, V. L., Janak, J. F. & Schwarz, K. Calculated thermal properties of metals. Phys. Rev. B 37, 790–799 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Mañosa, Ll. et al . Acoustic-mode vibrational anharmonicity related to the anomalous thermal expansion of Invar iron alloys. Phys. Rev. B 45, 2224–2236 (1992).

    Article  ADS  Google Scholar 

  26. von Barth, U. & Hedin, L. Alocal exchange-correlation potential for the spin polarized case: I. J. Phys. C 5, 1629–1642 (1972).

    Article  ADS  CAS  Google Scholar 

  27. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975).

    Article  ADS  CAS  Google Scholar 

  28. Andersen, O. K., Jepsen, O. & Glötzel, D. in Highlights of Condensed-Matter Theory (eds Bassani, F., Fumi, T. & Tosi, M. P.) 59–176 (North-Holland, New York, (1985).

    Google Scholar 

Download references

Acknowledgements

M.v.S. thanks V. Antropov for discussions; I.A.A. and B.J. were supported by the Swedish Natural Science Council; M.v.S. was supported by ONR. This work was also supported by the Swedish Materials Consortium No. 9.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Schilfgaarde, M., Abrikosov, I. & Johansson, B. Origin of the Invar effect in iron–nickel alloys. Nature 400, 46–49 (1999). https://doi.org/10.1038/21848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21848

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing