Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin gap and magnetic coherence in a clean high-temperature superconductor


A notable aspect of high-temperature superconductivity in the copper oxides is the unconventional nature of the underlying paired-electron state. A direct manifestation of the unconventional state is a pairing energy—that is, the energy required to remove one electron from the superconductor—that varies (between zero and a maximum value) as a function of momentum, or wavevector1,2: the pairing energy for conventional superconductors is wavevector-independent3,4. The wavefunction describing the superconducting state will include the pairing not only of charges, but also of the spins of the paired charges. Each pair is usually in the form of a spin singlet5, so there will also be a pairing energy associated with transforming the spin singlet into the higher-energy spin triplet form without necessarily unbinding the charges. Here we use inelastic neutron scattering to determine thewavevector-dependence of spin pairing in La2−xSrxCuO4, the simplest high-temperature superconductor. We find that the spin pairing energy (or ‘spin gap’) is wavevector independent, even though superconductivity significantly alters the wavevector dependence of the spin fluctuations at higher energies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The reciprocal-space regions over which measurements were made and the resulting data as a function of wavevector and energy transfer.
Figure 2: Constant-E scans at various energies through the incommensurate peaks at Tc and in the superconducting phase at 5 K.
Figure 3: Spectra at various wavevectors, and the Q-dependence of the inverse lifetime and susceptibility extracted by fitting such profiles.
Figure 4: The wavevector dependence of the spin gap in the superconducting state at 5 K.


  1. 1

    Shen, Z.-X. et al . Anomalously large gap anisotropy in the ab plane of Bi2Sr2CaCu2O8+y . Phys. Rev. Lett. 70, 1553–1556 (1993).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Ding, H. et al . Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+y . Phys. Rev. B 54, R9678–R9681 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Scalapino, D. J., Loh, E. J & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8195 (1986).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 61, 1175–1185 (1957).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Vaknin, D. et al . Antiferromagnetism in La2CuO4. Phys. Rev. Lett. 58, 2802–2805 (1987).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Mook, H. A. et al . Spin fluctuations in YBa2Cu3O6.6. Nature 395, 580–582 (1998).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Cheong, S.-W. Incommensurate magnetic fluctuations in La2−x Sr x CuO4. Phys. Rev. Lett.; 67, 1791–1794 (1991).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Mason, T. E., Aeppli, G. & Mook, H. A. Magnetic dynamics of superconducting La1.86Sr0.14CuO4. Phys. Rev. Lett. 68, 1414–1417 (1992).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Mason, T. E., Schröder, A., Aeppli, G., Mook, H. A. & Hayden, S. M. New magnetic coherence effect in superconducting La2−x Sr x CuO4. Phys. Rev. Lett. 77, 1604–1607 (1996).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Yamada, K. et al . Direct observation of a magnetic gap in superconducting La1.85Sr0.15CuO4(T c= 37.3 K). Phys. Rev. Lett. 75, 1626–1629 (1995).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Petit, S., Moudden, A. H., Hennion, B., Vietkin, A. & Revcolevschi, A. Spin dynamics study of La2−x Sr x CuO4by inelastic neutron scattering. Physica B 234–236, 800–802 (1997).

    ADS  Article  Google Scholar 

  13. 13

    Mason, T. E., Aeppli, G., Hayden, S. M., Ramirez, A. P. & Mook, H. A. Magnetic fluctuations in superconducting La2−x Sr x CuO4. Physica B 199–200, 284–287 (1994).

    ADS  Article  Google Scholar 

  14. 14

    Mason, T. E., Aeppli, G., Hayden, S. M., Ramirez, A. P. & Mook, H. A. Low energy excitations in superconducting La1.86Sr0.14CuO4. Phys. Rev. Lett. 71, 919–921 (1993).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Joynt, R. & Rice, T. M. Magnetic properties of anisotropic superconductors. Phys. Rev. B 38, 2345–2353 (1988).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Tanamato, T., Kohno, H. & Fukuyama, H. Magnetic properties of extended t-J model. II. Dynamical properties. J. Phys. Soc. Jpn 63, 2739–2759 (1994).

    ADS  Article  Google Scholar 

  17. 17

    Rendell, J. M. & Carbotte, J. P. Effects of gap and band anisotropy on spin susceptibility in the oxide superconductors. Phys. Rev. B 53, 589–5899 (1996).

    Google Scholar 

  18. 18

    Zha, Y., Levin, K. & Si, Q. Neutron experiments as a test of anisotropic pairing in YBa2Cu3O7−y and La2−x Sr x CuO4. Phys. Rev. B 47, 9124–9127 (1993).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Bulut, N. & Scalapino, D. J. Neutron scattering in a d x 2 - x 1 -wave superconductor. Phys. Rev. B 50, 16078–16081 (1993).

    ADS  Article  Google Scholar 

  20. 20

    Morr, D. K. & Pines, D. The effect of superconductivity on the incommensurate magnetic response of cuprate superconductors. Preprint cond-mat/9807214 at 〈〉 (1998).

  21. 21

    Tsuei, C. C. et al . Pairing symmetry in single-layer tetragonal Tl2Ba2CuO6+δsuperconductors. Science 271, 329–322 (1996).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Chen, X. K., Irwin, J. C., Trodahl, H. J., Kimura, T. & Kishio, K. Investigation of the superconducting gap La2−x Sr x CuO4by Raman spectroscopy. Phys. Rev. Lett. 73, 3290–3292 (1994).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Luther, A. & Emery, V. J. Backward scattering in the one-dimensional electron gas. Phys. Rev. Lett. 33, 589–592 (1974).

    ADS  Article  Google Scholar 

  24. 24

    Rokhsar, D. S. & Kivelson, S. A. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376–2379 (1988).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Tsunetsugu, H. Doped spin-liquid antiferromagnets and Luther-Emery liquid. Physica B 237–238, 108–111 (1997).

    ADS  Article  Google Scholar 

  26. 26

    Dagotto, E., Riera, J. & Scalapino, D. Superconductivity in ladders and coupled planes. Phys. Rev. B 45, 5744–5747 (1992).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Rice, T. M., Gopalan, S. & Sigrist, M. Superconductivity, spin gaps and Luttinger liquids in a class of cuprates. Europhys. Lett. 23, 445–449 (1993).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Emery, V. J., Kivelson, S. A. & Zachar, O. Spin-gap proximity effect mechanism of high-temperature superconductivity. Phys. Rev. B 56, 6120–6147 (1997).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Andoh, Y. et al . Resistive upper critical fields and irreversibility lines of optimally doped high-T ccuprates. Preprint (Bell Laboratories, Murray Hill, NJ 07974, USA, (1998).

  30. 30

    Mason, T. E., Clausen, K. N., Aeppli, G., McMorrow, D. F. & Kjems, J. K. RITA: The reinvented triple-axis spectrometer. Can. J. Phys. 73, 697–702 (1995).

    ADS  CAS  Article  Google Scholar 

Download references


We thank K. N. Clausen for help and support during the experiments, and B.Batlogg, G. Boebinger, V. Emery, S. Kivelson, H. Mook, D. Morr, D. Pines, Z.-X. Shen, C.-C. Tsuei and J. Zaanen for discussions. Work done at the University of Toronto was sponsored by the Natural Sciences and Engineering Research Council and the Canadian Institute for Advanced Research, while work done at Oak Ridge was supported by the US DOE. T.E.M. was supported by the Alfred P. Sloan Foundation, and A.S. was supported by the TMR program.

Author information



Corresponding author

Correspondence to B. Lake.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lake, B., Aeppli, G., Mason, T. et al. Spin gap and magnetic coherence in a clean high-temperature superconductor. Nature 400, 43–46 (1999).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing