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for example, where i = (d ¥, — d F'y)/d@, with the expected
value E(p,)=I1,, and variance

nlf(dF; — dF,)H]

A considerable choice of H is possible. Thus, congidering
for definiteness the density case, we define the unweighted
least-squares estimator of II, by the choice AG=dx,
H=f,—f,. We should, howover, expect weighted esti-
mators to be better. In fact, because the variance of d F is
fdz/n, ~we should try to choose d@=fdz; the term
JHAF in the expression for a*(p,), arising from the covari-
ance of dFs(x) and dFs(y), then vanishes, and o*p,)
becomes identical with the reciprocal of the information
funetion I(Il,). If we take d&=II,dF, + (1 — II,)d F,, then
this weighting will be most efficient when I1, is close to
1'[1._ Thus if we suspect II 4 to bo near 1, % or 0, suitable
choices forll, would be 1, } or 0, respectively, An alterna-
tive to H{dF,+dF,) is the geometric mean of dF, and
dfy, and another is max(d¥,, dF;). The geometric
moean has some convenience over the arithmetic mean in
theoretical investigations of efficiency (for exampls, for
Ju and f, normal), but the latter (or alternatively
max(dF,, dF,)) has the advantage of approximating to
the maximum likelihood estimator, for any value of [l,,
in both the extreme cases of f; and f, well separated and
of f—f,. It has been shown by Hill! that the information

funetion I(I1,) forlT ; may be written n[1 - S(I1 OD1/(11,]T,),
whore

o*{p;) =

S(IT) = [(fifo/f)de

If f, and f; differ by some parameter . (for example, the
mean), and Ap=y,— 4, then also as f—f,,

I(IT,) ~ n(Ap)i(w)
where I(y) is the information function for p. Thus for

the maximum likelihood estim&torﬁl the variance, which
i II,I,/n for f; and f, well separated, is 1/[n(Aw)2(1)] as
12

In the case of further unknown parameters 8; the
problem is obviously more complex, because of the
non-linear dependence of f on 8;; but linearization of the
estimation equations may sometimes be convenient. For
example, for two populations with unknown parameters
0:, 8, respectively, we might adopt the standard least-
gquares procedure of taking provisional values v,, v,, say,
so that in the “sum of squares” to be minimized we write
in the numerator

S~ falva) + 14(fi(vy) — Salva)) + q?’lafl/a”l + ‘Peafz/a've
in the unknownsII,, ¢, and g,, where
o =18, — »y), P2 =M,(0; — vy)

(retaining the provisional values v, and v, in the weighting-
function d@).
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Speculations on the Use of Orthonormal
Functions in the Study of Morphogenesis

THE recent proposal' (o analyse shapes of biologieal
objects by means of orthonormal funetions opens up some
interesting possibilities. Tn the work cited. & particular
set of two-dimensional orthonormal functions synthesized
from Walsh® functions whieh take only the values +1
and —1 was used. As is well known, however, there is
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a vast number of other complete sets of orthonormal
functions and, in fact, they could he constructed in-
definitely. There are also standard linear methods for
transforming from one set of orthonormal functions to
another; these procedures can be realized as computer
programimes.

~ The Walsh-derived functions are most suitable as an
initial set because of their simplicity. Their characteristic
chequerhoard patterns, however, are not the most natural
to use for the analysis of familiar kinds of biological
objects; this was indicated by the fact! that, for good
accuracy, as many as 256 torms might be nooded in the
expansion for a leaf. It might be possible to construct a
different orthonormal set of basic patterns which would
be more “leaf-like” in shape; ideally, a development
series of leaves would all be adequately deseribed by merely
two or three terms, say. What is required then is to devise
computer programmes which, for a given series of input
shapes, would find the best orthonormal set—using the
transformation procedures referred to—best In the sense
that fewest terms would be required for adequate deserip-
tion. When this had been achieved, one might hope to
discover laws of a general type from the experimental
data, for example, by studying the ehangos of the weights
(that is, coefficients in the orthonormal expansion) that
oceur in development or because of experimentally applied
external agents. If this were achieved, the basic patterns
would presumably have genuine biological significance,

What follows is rather more speculative. It is well
known that most of the standard orthonormal functions
of mathematical physies (sinusoidal or Bessel, for example)
arise naturally in the solution of differential equations
with boundary constraints. Thus a given set of ortho-
normal functions characterizes a given differential equa-
tion with its associated boundary conditions. If then
an orthonormal set which was particularly adequato in
the sense of the previous paragraph was found, this set
might well have a special significance and be indieative of
some differential equation or, maybe, difference equation
or other type of equation, which characterizes in a
general way the development of the patterns concerned.
It might thus be possible, merely from examining the
optimum orthonormal sets generated by the computer
programmes, to draw coneclusions about or even to derive
the fundamental laws—in the form of differential equa-
tions or something similar—which govern the development
of form.

Another issue, which it may be fruitful to investigate, is
the biological meaning, if any, of the maximal weights
previously discussed!. If one attempted to reconstruct
a form from the maximal weights directly, one would
fail, because in general the constructed function would
have other wvalues than ¢ and 1. Nevertheless, this
function, because it contains all the information about
the degrees of resornblance of the form concerned to
the basic pattern forms, should have a significance which
might be usable—especially in those cases where the
number of basic patterns effectively used is very small,
as discussed previously.

It would also be useful to generalize the orthonormal
expansion mothod by allowing the form function to have
more than two values. For example, a representation of
the veins of a leaf might be included with a valuc of 2
being assigned at locations on a vein. This would provide
a three-valued funetion, but many-valued funetions could
be used also for other purposes such as giving the distribu-
tion of colour as well as shape of an object, when a suitable
numerical coding of the colours had been chosen.
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