Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites

Abstract

Natural materials are renowned for their strength and toughness1,2,3,4,5. Spider dragline silk has a breakage energy per unit weight two orders of magnitude greater than high tensile steel1,6, and is representative of many other strong natural fibres3,7,8. The abalone shell, a composite of calcium carbonate plates sandwiched between organic material, is 3,000 times more fracture resistant than a single crystal of the pure mineral4,5. The organic component, comprising just a few per cent of the composite by weight9, is thought to hold the key to nacre's fracture toughness10,11. Ceramics laminated with organic material are more fracture resistant than non-laminated ceramics11,12, but synthetic materials made of interlocking ceramic tablets bound by a few weight per cent of ordinary adhesives do not have a toughness comparable to nacre13. We believe that the key to nacre's fracture resistance resides in the polymer adhesive, and here we reveal the properties of this adhesive by using the atomic force microscope14 to stretch the organic molecules exposed on the surface of freshly cleaved nacre. The adhesive fibres elongate in a stepwise manner as folded domains or loops are pulled open. The elongation events occur for forces of a few hundred piconewtons, which are smaller than the forces of over a nanonewton required to break the polymer backbone in the threads. We suggest that this ‘modular’ elongation mechanism might prove to be quite general for conveying toughness to natural fibres and adhesives, and we predict that it might be found also in dragline silk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning and transmission electron micrographs of a freshly cleavedabalone shell, showing adhesive ligaments formed between nacre tablets.
Figure 2: Consecutive force–extension curves, obtained using an atomic force microscope, from pulling on a freshly cleaved abalone nacre surface.
Figure 3: Model of long polymers and force–extension curves for different kinds of polymers.

Similar content being viewed by others

References

  1. Hinman, M., Dong, Z., Xu, M. & Lewis, R. V. in Biomolecular Materials(eds Viney, C., Case, S. T. &Waite, J. H.) 25–34 (Materials Research Soc., Pittsburgh, 1993).

    Google Scholar 

  2. Qin, X., Coyne, K. J. & Waite, J. H. Anovel natural copolymer: A collagenous molecule from mussel byssus contains silk fibroin-like domains. Am. Zool. 37, 125A (1997).

    Google Scholar 

  3. Waite, J. H., Qin, X. X. & Coyne, K. J. The peculiar collagens of mussel byssus. Matrix Biol. 17, 93–106 (1998).

    Article  CAS  Google Scholar 

  4. Currey, J. D. Mechanical properties of mother of pearl in tension. Proc. R. Soc. Lond. B 196, 443–463 (1977).

    Article  ADS  Google Scholar 

  5. Jackson, A. P., Vincent, J. F. & Turner, R. M. The mechanical design of nacre. Proc. R. Soc. Lond. B 234, 415–440 (1988).

    Article  ADS  Google Scholar 

  6. Heslot, H. Artificial fibrous proteins: A review. Biochimie (Paris) 80, 19–31 (1998).

    Article  CAS  Google Scholar 

  7. Vollrath, F. & Edmonds, D. T. Modulation of the mechanical properties of spider silk by coating with water. Nature 340, 305–307 (1989).

    Article  ADS  Google Scholar 

  8. Qin, X. X., Coyne, K. J. & Waite, J. H. Tough tendons. Musse byssus has collagen with silk-like domains. J. Biol. Chem. 272, 32623–32627 (1997).

    Article  CAS  Google Scholar 

  9. Watable, N. & Wilbur, K. M. (eds.) The Mechanisms of Biomineralization in Invertebrates and Plants(Univ. South Carolina Press, Columbia, SC, 1976).

    Google Scholar 

  10. Weiner, S. Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Crit. Rev. Biochem. 20, 365–408 (1986).

    Article  CAS  Google Scholar 

  11. Jackson, A. P., Vincent, J. F. V. & Turner, R. M. Aphysical model of nacre. Composites Sci. Technol. 36, 255–266 (1989).

    Article  CAS  Google Scholar 

  12. Clegg, W. J., Kendall, K., Alford, N. M., Button, T. W. & Birchall, J. D. Asimple way to make tough ceramics. Nature 347, 455–457 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Almqvist, N. et al. Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7(1), 37–43 (1999).

    Article  Google Scholar 

  14. Binnig, G., Quate, C. F. & Gerber, C. The atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Addadi, L. & Weiner, S. Biomineralization—A pavement of pearl. Nature 389, 912–915 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Schäffer, T. E. et al. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731–1740 (1997).

    Article  Google Scholar 

  17. Shen, X., Belcher, A. M., Hansma, P. K., Stucky, G. D. & Morse, D. E. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272, 32472–32481 (1997).

    Article  CAS  Google Scholar 

  18. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 276, 1295–1297 (1997).

    Article  Google Scholar 

  19. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  20. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Mehta, A. D., Rief, M., Spudich, J. A., Smith, D. A. & Simmons, R. M. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  23. Keller, T. C. S. Molecular bungees. Nature 387, 233–235 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Al-Hassani, S. T. S. & Kaddour, A. S. Strain rate effects on GRP, KRP and CFRP composite laminates. Key Eng. Mater. 141, 427–452 (1998).

    Google Scholar 

  26. Greenwood, J. H. & Rose, P. G. Compressive behaviour of Kevlar 49 fibres and composites. J. Mater. Sci. 9, 1809–1814 (1974).

    Article  ADS  CAS  Google Scholar 

  27. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1988).

    Article  Google Scholar 

  28. Slater, G. W., Hubert, S. J. & Nixon, G. I. Construction of approximate entropic forces for finitely extensible nonlinear elastic (FENE) polymers. Macromol. Theory Simulat. 3, 695–704 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Lange and E. Kramer for help in understanding polymers, and H. Gaub and his group members both for helping to teach us how to unfold proteins, and for suggesting that organic components of abalone shells might be a good system in which to study polymer unfolding. This work was supported by the NSF (P.K.H.), by NSF through the Materials Research Laboratory, the Office of Naval Research, the Army Research Office MURI program, and the NOAA National Sea Grant College Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettye L. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B., Schäffer, T., Viani, M. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999). https://doi.org/10.1038/21607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21607

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing