Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins

Abstract

The anticancer activity of cis -diamminedichloroplatinum(II) (cisplatin) arises from its ability to damage DNA, with the major adducts formed being intrastrand d(GpG) and d(ApG) crosslinks1. These crosslinks bend and unwind the duplex, and the altered structure attracts high-mobility-group domain (HMG) and other proteins2. This binding of HMG-domain proteins to cisplatin-modified DNA has been postulated to mediate the antitumour properties of the drug3,4. Many HMG-domain proteins recognize altered DNA structures such as four-way junctions and cisplatin-modified DNA5, but until now the molecular basis for this recognition was unknown. Here we describe mutagenesis, hydroxyl-radical footprinting and X-ray studies that elucidate the structure of a 1:1 cisplatin-modified DNA/HMG-domain complex. Domain A of the structure-specific HMG-domain protein HMG1 binds to the widened minor groove of a 16-base-pair DNA duplex containing a site-specific cis -[Pt(NH3)2{d(GpG)-N7(1),-N7(2)}] adduct. The DNA is strongly kinked at a hydrophobic notch created at the platinum–DNA crosslink and protein binding extends exclusively to the 3′ side of the platinated strand. A phenylalanine residue at position 37 intercalates into a hydrophobic notch created at the platinum crosslinked d(GpG) site and binding of the domain is dramatically reduced in a mutant in which alanine is substituted for phenylalanine at this position.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary structure and features of the complex between the non-sequence-specific domain A of HMG1 and cisplatin-modified DNA.
Figure 2: Structure of the HMG1 domain A complex with cisplatin-modified DNA.
Figure 3: The platinum–DNA crosslink and protein–DNA interactions.

Similar content being viewed by others

References

  1. Lepre, C. A. & Lippard, S. J. in Nucleic Acids and Molecular Biology(eds Eckstein, F. & Lilley, D. M. J.) 9–38 (Springer, Heidelberg, 1990).

    Book  Google Scholar 

  2. Zlatanova, J., Yaneva, J. & Leuba, S. H. Proteins that specifically recognize cisplatin-damaged DNA: aclue to anticancer activity of cisplatin. FASEB J. 12, 791–799 (1998).

    Article  CAS  Google Scholar 

  3. Zamble, D. B. & Lippard, S. J. Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem. Sci. 20, 435–439 (1995).

    Article  CAS  Google Scholar 

  4. Zhai, X., Beckmann, H., Jantzen, H.-M. & Essigmann, J. M. Cisplatin–DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Biochemistry 37, 16307–16315 (1998).

    Article  CAS  Google Scholar 

  5. Bustin, M. & Reeves, R. in Progr. Nucleic Acid Res. Mol. Biol.(eds Cohn, W. E. & Moldave, K.) 35–100 (Academic, San Diego, 1996).

    Google Scholar 

  6. Read, C. M. et al. . in Nucleic Acids and Molecular Biology(eds Eckstein, F. & Lilley, D. M. J.) 222–250 (Springer, Berlin, 1995).

    Book  Google Scholar 

  7. Dunham, S. U. & Lippard, S. J. DNA sequence context and protein composition modulate HMG-domain protein recognition of cisplatin-modified DNA. Biochemistry 36, 11428–11436 (1997).

    Article  CAS  Google Scholar 

  8. Chow, C. S., Barnes, C. M. & Lippard, S. J. Asingle HMG domain in high-mobility group 1 protein binds to DNAs as small as 20 base pairs containing the major cisplatin adduct. Biochemistry 34, 2956–2964 (1995).

    Article  CAS  Google Scholar 

  9. Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY–DNA complex. Cell 81, 705–714 (1995).

    Article  CAS  Google Scholar 

  10. Love, J. J. et al. . Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  12. Dunham, S. U., Dunham, S. U., Turner, C. J. & Lippard, S. J. Solution structure of a DNA duplex containing a nitroxide spin-labeled platinum d(GpG) intrastrand cross-link refined with NMR-derived long-range electron–proton distance restraints. J. Am. Chem. Soc. 120, 5395–5406 (1998).

    Article  CAS  Google Scholar 

  13. Gelasco, A. & Lippard, S. J. NMR solution structure of a DNA dodecamer duplex containing a cis -diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. Biochemistry 37, 9230–9239 (1998).

    Article  CAS  Google Scholar 

  14. Takahara, P. M., Frederick, C. A. & Lippard, S. J. Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J. Am. Chem. Soc. 118, 12309–12321 (1996).

    Article  CAS  Google Scholar 

  15. Hardman, C. H. et al. . Structure of the A-domain of HMG1 and its interaction with DNA as studied byheteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 34, 16596–16607 (1995).

    Article  CAS  Google Scholar 

  16. Broadhurst, R. W., Hardman, C. H., Thomas, J. O. & Laue, E. D. Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy. Biochemistry 34, 16608–16617 (1995).

    Article  CAS  Google Scholar 

  17. Sherman, S. E., Gibson, D., Wang, A. H.-J. & Lippard, S. J. Crystal and molecular structure of cis -[Pt(NH3)2{d(pGpG)}], the principal adduct formed by cis -diamminedichloroplatinum(II) with DNA. J. Am. Chem. Soc. 110, 7368–7381 (1988).

    Article  CAS  Google Scholar 

  18. Dickerson, R. E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926 (1998).

    Article  CAS  Google Scholar 

  19. Yang, D., van Boom, S. S. G. E., Reedijk, J., van Boom, J. H. & Wang, A. H.-J. Structure and isomerization of an intrastrand cisplatin-corsslinked octamer DNA duplex by NMR analysis. Biochemistry 34, 12912–12920 (1995).

    Article  CAS  Google Scholar 

  20. Teo, S.-H., Grasser, K. D. & Thomas, J. O. Differences in the DNA-binding properties of the HMG-box domains of HMG1 and the sex-determining factor SRY. Eur. J. Biochem. 230, 943–950 (1995).

    Article  CAS  Google Scholar 

  21. Weiss, M. A., Ukiyama, E. & King, C.-Y. The SRY cantilever motif discriminates between sequence- and structure-specific DNA recognition: alanine mutagenesis of an HMG box. J. Biomol. Struct. Dyn. 15, 177–184 (1997).

    Article  CAS  Google Scholar 

  22. Berners-Price, S. J. et al. . Structural transitions of a GG-platinated DNA duplex induced by pH, temperature and box A of high-mobility group protein 1. Eur. J. Biochem. 243, 782–791 (1997).

    Article  CAS  Google Scholar 

  23. Balaeff, A., Churchill, M. E. A. & Schulten, K. Structure prediction of a complex between the chromosomal protein HMG-D and DNA. Proteins 30, 113–135 (1998).

    Article  CAS  Google Scholar 

  24. Yoshioka, K. et al. . Differences in DNA recognition and conformational change activity between boxes A and B in HMG2 protein. Biochemistry 38, 589–595 (1999).

    Article  CAS  Google Scholar 

  25. Falciola, L., Murchie, A. I. H., Lilley, D. M. J. & Bianchi, M. E. Mutational analysis of the DNA binding domain A of chromosomal protein HMG1. Nucleic Acids Res. 22, 285–292 (1994).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Rould, M. A. Screening for heavy-atom derivatives and obtaining accurate isomorphous differences. Methods Enzymol. 276, 461–472 (1997).

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  29. Brünger, A. T. XPLOR Version 3.1, A system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut, 1992).

  30. Baxevanis, A. D. & Landsman, D. The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res. 23, 1604–1613 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Cancer Institute (to S.J.L.), by the Howard Hughes Medical Institute (C.O.P.), by equipment purchased with support from the PEW Charitable Trusts, and by predoctoral fellowships from the Fonds der Chemischen Industrie, Germany (U.-M.O.), and the Howard Hughes Medical Institute (Q.H.). We thank S. U. Dunham for discussion, and J. S. Wishnok for mass spectrometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Lippard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohndorf, UM., Rould, M., He, Q. et al. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399, 708–712 (1999). https://doi.org/10.1038/21460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21460

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing