Letter | Published:

Enhanced Reactivity at Dislocations in Layer Structures

Naturevolume 214pages167168 (1967) | Download Citation

Subjects

Abstract

THIS communication is concerned chiefly with the localized chemical reactivity of solids such as graphite, molybdenum sulphide and other substances which crystallize with layer structures and for which some information is available1 about their dislocation content. Most specimens of such solids are known to contain extremely high densities (for example 1013 cm−2 in graphite2) of basal dislocations which move freely through the layer planes even at low temperatures. But there is every indication3,4 that the presence of these glissile basal dislocations does not lead to enhanced reactivities of the solids. (It could be argued, however, that, for graphite at least, basal dislocations, owing to their ubiquity, contribute to the intrinsic reactivity of the solid.) This communication draws attention to the role of non-basal dislocations, the existence and influence of which have, until recently, tended to be overlooked.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Amelinckx, S., The Direct Observation of Dislocations (Academic Press, 1964).

  2. 2

    Dawson, I. M., and Follett, E. A. C., Proc. Roy. Soc., A, 253, 390 (1959).

  3. 3

    Presland, A. E. B., and Hedley, J. A., J. Nuclear Mat., 10, 99 (1963).

  4. 4

    Thomas, J. M., in Chemistry and Physics of Carbon, 1 (edit. by Walker, jun., P. L.) (Edward Arnold, 1965).

  5. 5

    Roscoe, C., and Thomas, J. M., Carbon, 4, 383 (1966).

  6. 6

    Reynolds, W. N., in Chemistry and Physics of Carbon, 2 (edit. by Walker, jun., P. L.) (Edward Arnold, 1966).

  7. 7

    Hörl, E. M., J. App. Phys., 36, 253 (1965).

  8. 8

    Amelinckx, S., and Delavignette, P., J. Nuclear Mat., 5, 17 (1962).

  9. 9

    Hull, D., Introduction to Dislocations (Pergamon Press, 1965).

  10. 10

    Roscoe, C., and Thomas, J. M., Proc. Roy. Soc., A, 297, 327 (1967).

  11. 11

    Patel, A. R., and Bahl, O. P., Z. Kristallog., 121, 5 (1965).

  12. 12

    Fitzer, E., and Schlesinger, H., Carbon, 3, 247 (1965).

  13. 13

    Hennig, G. R., Science, 147, 733 (1965).

  14. 14

    Hennig, G. R., in Chemistry and Physics of Carbon, 2 (edit. by Walker, jun., P. L.) (Edward Arnold, 1966).

  15. 15

    Weertman, J., and Weertman, J. A., Elementary Dislocation Theory (Macmillan, 1964).

  16. 16

    Bell, R. L., and Cahn, R. W., Proc. Roy. Soc., A, 239, 494 (1957).

  17. 17

    Price, P. B., Electron Microscopy and Strengths of Crystals (Interscience, 1963).

  18. 18

    Muguruma, J., Nature, 208, 180 (1965).

  19. 19

    Tompkins, F. C., Pure App. Chem., 9, 387 (1964).

  20. 20

    Roscoe, C., thesis, Univ. Wales (1966).

  21. 21

    Gilman, J. J., Trans. Amer. Inst. Min. (Metall.) Eng., 212, 310 (1958).

  22. 22

    Rothstein, J., Phys. Rev., 95, 370 (1954).

  23. 23

    Arlman, E. J., J. Catal., 3, 89 (1964).

  24. 24

    Cossee, P., J. Catal., 3, 80 (1964).

  25. 25

    Frank, F. C., Acta Crystall., 14, 497 (1951).

Download references

Author information

Affiliations

  1. Department of Chemistry, University College of North Wales, Bangor

    • J. M. THOMAS
    •  & E. L. EVANS

Authors

  1. Search for J. M. THOMAS in:

  2. Search for E. L. EVANS in:

About this article

Publication history

Received

Issue Date

DOI

https://doi.org/10.1038/214167a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.