Letter | Published:

Absence of Organic Phase in Echinoderm Calcite

Naturevolume 214pages8183 (1967) | Download Citation

Subjects

Abstract

IT has long been recognized that the magnesian calcite skeleton of echinoderms is laid down as a crystal network by a syncytial protoplasmic mass that permeates the cavities within it. It is usually stated that all components except echinoid teeth1, be they spines, thecal plates, pedicellaria valves, or any other skeletal feature, behave crystallographically as a single crystal of calcite2–4. In other metazoan tissues that have been investigated the arrangement of the skeleton is that of a two phase system, with a softer and a harder phase intimately mingled. This is true, for example, of bone5, dentine, enamel6, arthropod cuticle7,8, brachiopod shell9,10, mollusc skeleton11 and coral12. Two phase construction is also seen in wood13. This double component nature of hard skeletal elements appears to impart considerable mechanical strength14. The almost universal occurrence of two phase construction in skeletal materials elsewhere and the considerable advantages such a structure clearly bestows make its lack in echinoderms surprising.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Salter, S. J. A., Phil. Trans. Roy. Soc., 151, 387 (1861).

  2. 2

    Schmidt, W. J., Zool. Jb. Anat., 47, 113 (1925).

  3. 3

    West, C. D., J. Paleont., 11, 458 (1937).

  4. 4

    Raup, D., J. Paleont., 39, 934 (1965).

  5. 5

    McLean, F. C., and Urist, M. R., Bone (University of Chicago Press, 1961).

  6. 6

    Frank, R. M., Sognnaes, R. F., and Kern, R., Amer. Assoc. Adv. Sci. Pub., 64, 163 (1960).

  7. 7

    Jensen, M., and Weis-Fogh, T., Phil. Trans. Roy. Soc., B, 245, 137 (1962).

  8. 8

    Rudall, K. M., in Aspects of Insect Biochemistry (edit. by Goodwin, T. W.), Biochem. Soc. Symp., 25, 83 (1966).

  9. 9

    Williams, A., Biol. Rev., 31, 243 (1956).

  10. 10

    Williams, A., Nature, 211, 1146 (1966).

  11. 11

    Wilbur, K. M., Amer. Assoc. Adv. Sci. Pub., 64, 15 (1960).

  12. 12

    Wainwright, S. A., Quart. J. Microsc. Sci., 104, 169 (1963).

  13. 13

    Cottrell, A. H., The Mechanical Properties of Matter (Wiley, London, 1964).

  14. 14

    Currey, J. D., Biorheology, 2, 1 (1964).

  15. 15

    Okazaki, K., Embryologia, 5, 283 (1960).

  16. 16

    Garrido, J., and Blanco, J., C.R. Acad. Sci., Paris, 224, 485 (1947).

  17. 17

    Nissen, H.-U., Neues Jb. Miner. Geol. Palaont. Abh., 117, 230 (1963).

  18. 18

    Vose, G. P., Anat. Rec., 145, 183 (1963).

  19. 19

    Scott, D. B., Ussing, M. J., Sognnaes, R. F., and Wyckoff, R. W. G., J. Dent. Res., 31, 74 (1952).

  20. 20

    Gregoire, C., J. Biophys. Biochem. Cytol., 3, 797 (1957).

  21. 21

    Currey, J. D., Quart. J. Microsc. Sci., 103, 111 (1962).

Download references

Author information

Affiliations

  1. Department of Biology, University of York

    • J. D. CURREY
  2. Department of Zoology, University of Oxford

    • DAVID NICHOLS

Authors

  1. Search for J. D. CURREY in:

  2. Search for DAVID NICHOLS in:

About this article

Publication history

Issue Date

DOI

https://doi.org/10.1038/214081a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.