LETTERS TO THE EDITOR

ASTRONOMY

Hydrogen Recombination Lines 126α and 166α observed in Galactic HII Regions

USING the Parkes radiotelescope, we have searched the Southern Milky Way for the 126α hydrogen recombination line of rest frequency 3248.713 Mc/s. (The notation $n\alpha$ indicates a transition from the level of quantum number (n+1) to level n; n\beta indicates a transition from (n+2)to n.) Ninetcen sources were inspected and the line was detected in fifteen, all of which were well known HII regions. The nebulae¹ were

Orion Nebula	RCW 57	NGC 6334
IC 434	RCW 74	NGC 6357
RCW 38	1608 - 51	M 17
n Carinae (two positions)	1617 - 50	W 49
	1818-49	W 51

Four neighbouring points were checked in the Orion Nebula and M 17 to establish that the maximum line intensity corresponded to the maximum continuum temperature.

A probable detection was made in the galactic centre source at $l_{II} = 40'$, $b^{II} = -2'$. No detections were made in the two non-thermal sources, Sagittarius A and the Crab Nebula. The extra-galactic source, 30 Doradus in the Large Magellanic Cloud, gave a negative result, possibly because the sensitivity was not great enough.

The three most intense HII regions, Orion Nebula, M 17 and RCW 38, were later observed for the 166α line, with a rest frequency 1424.736 Mc/s.

Table 1 shows details relating to the three sources of: (i) T_L , the peak line intensity in terms of aerial temperature; (ii) the ratio T_L/T_c , where T_c is the corresponding aerial temperature in the continuum; (iii) Δv , the half-intensity width of the line, corrected for broadening with 37 kc/s filters; and (iv) the central line radial velocities (referred to the local standard of rest).

Table 1. Summary of observations of hydrogen recombination lines 126α , 166α

Source	Line	(° K)	T_L/T_C (per cent)	$\frac{\Delta \nu}{(\text{kc/s})}$	Radial velocity (km/s)
Orion Nebula	126a 166a	$6.4 \pm 0.1 \\ 1.9 \pm 0.1$	3.5 0.8	$430 \pm 10 \\ 215 \pm 10$	$-\frac{2}{0}$
M 17	126a 166a	$\begin{array}{c} 5 \cdot 7 \pm 0 \cdot 1 \\ 3 \cdot 0 \pm 0 \cdot 1 \end{array}$	$3.1 \\ 1.05$	$388 \pm 10 \\ 203 \pm 20$	$^{+20}_{+20}$
RCW 38	$\frac{126a}{166a}$	2.4 ± 0.1 1.2 ± 0.1	2.5 1.05	398 ± 15 156 ± 20	$^{+4}_{+8}$

Palmer and Zuckerman² have detected the 166α line in only M 17. Their values of T_L/T_C and Δv are 0.9 \pm 0.2 per cent and 183 ± 60 kc/s when corrections are made for their 80 kc/s bandwidth.

Recently, we have considered³ the ratio of the peak intensities of the 126α line to the β lines, 159β and 158β , at nearby frequencies, $3211\cdot245$ and $3272\cdot219$ Mc/s, respectively. In the source *M* 17, the ratio *I* $(158\beta)/I$ (126α) of 0.22 ± 0.04 was close to the theoretical value 0.224 derived from formulae set down by Kardashev⁴. In the Orion Nebula, however, the ratio was considerably Without observations at lower lower: 0.13 ± 0.03 . frequency to give bandwidths near 158a it was impossible to infer whether this resulted from departures from local thermodynamic equilibrium of the populations or to appreciable broadening of the energy levels involved in the 158 β , 159 β transitions (and the corresponding α transitions) in the Orion Nebula. As the Bohr radius is proportional to the square of the principal quantum number, the 158, 159 levels will be more affected by electron and ion densities than levels near 126. It is well

known that the density is considerably higher in Orion than in M 17.

In Fig. 1, T_L/T_c and Δv have been plotted against frequency over the range of the present observations so that values for the 158a line may be obtained by interpolation. The results for the 126 and 158 α -lines for the Orion Nebula may be compared with those for M 17. The 126 and 158 α -lines have been observed under similar conditions except for the increase in beamwidth from 6'are to 14' are. $I(158\alpha)/I(126\alpha)$ is 0.31 for the Orion Nebula and 0.43 for M 17; that is, the Orion value is 0.73 of the M 17 value. The ratio $I(158\beta)/I(126\alpha)$ for the two sources was 0.59. The small difference could be accommodated within the experimental errors.

Fig. 1. Recombination line half-width, $\Delta \nu$ (broken lines), and the ratio of line intensity to continuum intensity, T_1/Tc (full lines), are plotted against frequency (in G c/s) over the range of the 166a and 126a lines for the HII nebulae. \Box , Orion Nebula; Δ , M 17; O, RCW 38.

On the other hand, the corresponding ratio of $\Delta\nu$ for the two lines is effectively the same (0.96) for both sources, and thus broadening is inadequate to account for the intensity ratios.

We infer from the results that the populations at least for Orion are not in agreement with a Boltzmann distribution. The likelihood of such a situation has been discussed by Goldberg⁵.

R. X. MCGEE F. F. GARDNER

CSIRO Radiophysics Laboratory,

Sydney, Australia.

Received December 29, 1966.

- ¹ RCW numbers refer to the catalogue by Rodgers, Campbell and Whiteoak, Mon. Not. Rov. Astro. Soc., 120, 1 (1960). W refers to Westerbout, Bull. Astro. Inst., Netherlands, 14, 215 (1958). Numbers such as 1608-51 are co-ordinate numbers of sources in the Parkes Catalogue, Austral. J. Phys., 17, 340 (1964).
- ² Palmer, P., and Zuckerman, B., Nature, 209, 1118 (1966).
- ¹ Gardner, F. F., and McGee, R. X., Nature, 213, 480 (1967).
 ⁴ Kardashev, N. S., Soviet Astro. J., 3, 813 (1959).

^b Goldberg, L., Astrophys. J., 144, 1225 (1966).