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These results are in contradiction to the predictions of 
statistical detection theory and make it impossible to 
continue to explain Piper's law in this way. 

C. I. HowARTH 
G. LOWE 

Department of Psychology, 
University of Nottingham. 

' Barlow, H. B., J. Ph111iol., 141, 337 (1958). 
' Gregory, R . L., "Vision as an Information Source 1md Noiay Channel". 

Third London Symp. on Information Theory, 1956. 
' Piper, H., z. Plll/chol. Phuriol. Sinnuoru, 32 (1903). 
• Green, D. M., J, .Acou1t. Soc . .Amtr., 32, 1189 (1960). 

GENERAL 

Asymptotic Dam Theory 
IN a previous communication1, an asymptotic theory was 
outlined for the probabilistic behaviour of a finite dam or 
reservoir subject to random input and output. A further 
problem raised by Herman Rubin-that of the amount 
of water lost by overflow-may be solved by similar 
methods. In the case of normal diffusion which is treated 
here, the distribution of the overflow may be found by 
evaluating its moment generating function. There is an 
alternative and more general method, which is useful 
when only the expected overflow is required. The alterna
tive, suggested by R. Morton, is discussed in the succeeding 
communication. 

As before, let the total capacity of the dam be C and 
the initial content c. Suppose the water lost before the 
dam first reaches emptiness be W, and let H(Gtjc) = 
E(eaWJc), where E denotes expectation. For the simple 
discrete case with probability p of one unit input and q 
of one unit output, we readily find 

H(GtJc) = P 0(c) + Pc(c)H(ocJC) (1) 
H(GtjC- 1) = P 0 (C - I) + Pc(C - I)H(GtJC) (2) 

where P 0 (c) is the chance of emptiness before tho dam 
becomes full, and P c(c) is the chance of fullness before the 
dam becomes empty, given the starting point c. As we 
have also 

H(aJC) = peaH(ocJC) + qH(ociC - l) 
H(ocJc) can be determined. In particular 

H(GtJC) = qP0(C - 1) 
1- pea- qPc(C- 1) 

representing a geometric-type distribution. 

(3) 

(4) 

The asymptotic case of normal diffusion can either be 
derived as a limiting case of the above, or from the follow
ing more direct argument. In place of equation (2) we 
have 

H(GtJC- e:) = P 0(C- e:) + Pc(C- e:)H(GtjC) 
whence (as Pc(c) is differentiable at C, so is H(ocJc)) 

[
oH(GtJn)J = [H(a!C _ 1)J[oPc(n)J (5) 

on c one 
In place of equation (3) we write 

H(ocJC) = E(ea~WH(ocJC + 8V- 8W}) 
where 8 v is the net input and aw is the amount of over
flow during a. short time (Jt . Let m and cr• be the net mean 
and variance of the flow per unit time (m measured 
positively if mean output exceeds mean input-this 
corrects the wrong convention given above equation (5) 
of the earlier communication1}. 

The properties of normal diffusion imply that E(8W) is 
of order (8t)i, whereas 8V contributes only terms of 
order 8t. 

Thus we obtain 

GtH(GtJC) [
oH(cxJn)l 

an - c 
(6) 

whence H(cxJc) may be determined from equations (1), 
(5) and (6). 

In particular, as 
Pc(c) = (ecr- 1)/(eCY- 1) (7) 

where y = 2m/at, we find 
l 

H(ocJC) = 1 - Gt(1 - e-Cr)Jy 

representing an exponent-ial distribution. 
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J. A. BATHER 

Expected Overflow of a Dam 
CONSIDER a dam with total capacity C and initial content 
c. If the dam becomes full the surplus water overflows 
and is lost. Let W(t) be the total overflow up to time t, 
and T be the time at which the dam first becomes empty. 
For certain types of input and output Bartlett! derives 
the distribution ofT, and with Bather in the preceding 
communication, the distribution of W(T), the total over
flow before the dam becomes empty. 

For arbitrary input and output, the expectation of 
W(T) can be expressed in terms of the distribution of 
T and the excess demand for output at emptiness. 

Let m(t) be the mean flow per unit time (output minus 
input) at timet, and suppose that this does not depend on 
W(t) or X(t), the current content of the dam. By con
vention, X(T) is negative if there is excess demand when 
the dam is empty. 

I 
Denote M(t) = f m(s) ds, then . 

S(t) = W(t) + X(t) + M(t) 

can be regarded as a fair game in that for any "T < t 
E[S(t)JS( "T)] = S( "T). In particular, if "T = 0, E[S(t)] = c. 
The game is fair for any stopping rule, and in our case we 
stop at timeT when first X(T) ~ 0. We have, therefore, 

E[S(T)] = c = E[W(T)] + E[X(T)] + E[M(T)] (1) 

In cases where the output is continuous or the changes 
in content occur only in unit steps, there can be no 
excess demand and so X(T) = 0. Thus 

E[W(T)] = c - E[M(T)l (2) 

In particular, if m(t) = m is constant, equation (2) 
becomes 

E[W(T)] = c - m E[T] (3) 

If the output consists solely of discrete jumps with a 
negative exponential distribution, then - X(T) is also 
negative exponential, but in other cases E[X(T)] may 
be hard to evaluate. 

Equation (I) can be explained intuitively by saying 
that the expected surplus c - E[M(T)] must come out 
as overflow. 

I would point out that because W(T) ;;?; 0, equation (3) 
implies the inequality E(T) ~ cfm when m > 0, equality 
occurring only when no overflow is possible; for example 
if C = oo, or if the content certainly decreases. 
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