
©          Nature Publishing Group1966

1280 NATURE DECEMBER 10. 1966 VOL. 212 

holding. When waterlogged, however, ammonia volati
lization was 2-4 times greater than for the aerobie moisture 
levels. The higher incubation temperature (40 0 C) gave 
slightly greater ammonia volatilization. The differences 
caused by temperature increases became much more 
pronounced with the longer incubation period. Among 
the six aeid soils there was no correlation between the 
extent of volatilization of ammonia and the pH. 

As expected, the Saline-Sodic and Saline Palmaseca 
soils lost more ammonia than did the acid soils. The loss 
of ammonia by volatilization even from acid soils is difficult 
to explain. The mineralogical analysis of these acid 
soils showed that they all contained "alkaline" feldspars 
and other "basic" minerals. In spite of the fact that the 
soils as a whole were acid, the presence of these alkaline
producing materials distributed throughout the soils 
may be responsible for ammonia volatilization. It is 
notable, for example, that the Cerritos soil, which gave 
the greatest volatilization of ammonia among the acid 
soils, also had the highest content of these "alkaline" and 
"basic" minerals. 

This preliminary experiment has shown that loss of 
ammonia by volatilization can he important even from 
acid soils. Much further work is required on this problem, 
particularly to determine why the loss occurs. In general, 
losses in incubation tests may be expected to he greater 
than in the field, since in the latter case ammonium can 
diffuse downward through the soil, increasing the possi
bility of absorption by organic and inorganic colloids, or 
by plants. 

The possibility that ammonia may be lost by volatiliza· 
tion from acid soils after the application of ammonium 
sulphate or ammonia-producing fertilizers such as urea 
must be considered. This applies particularly in the 
tropics, where the soils eommonly rcach temperatures of 
more than 30° C. 
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MATHEMATICS 

Square-root Law for Solving Two-ended 
Problems 

SOME mathematical problems can be expressed in terms 
of threading mazes: we are given a non-oriented linear 
graph (notes and branehes) and wish to find a path from 
a node A to a node B, where A eorreRponds to the premises 
and B to the conclusions of some theorem" •. As is well 
known, it is likely to be more eeonomical to "work frorn 
both ends", that is, from both A and B, mthor than 
from A alone. For many years I have been remarking 
that the saving in work by this "two-ended" method is 
likely to be given approximately hy a RqUare root law. 
By this I mean that if the number of steps used when 
threading the maze from one end is S, then the number 
used when working from both ends is liablo to be of the 
order of the square root of S. These estimates, S and v'S, 
are both intended to bo expoeted values, and the result is 
true only if the maze is very difficult to thread, so that the 
shortest path from A to B is long and consists of far fewer 
than S steps. The eondition that the maze is difficult is 
to be interpreted in the senRO that thero is not at first 
much indication of whether we are going in the right 
direction, that is, there is at first no very useful estimate 
of "distance". We can define the distance from A to B 

as the number of steps required to get from A to B along 
the shortest path, but we have no quiek and effective 
method of telling when we are making steps that decrease 
the distance, when A and B are far apart. 

The most well known uneconomical method of threading 
a maze makes no use of the estimation of the distanee 
from A to B. It eonsists in locating all nodes at distance I 
from A, then all at distance 2, and 80 on, thus gonerating 
a tree rooted at A which eventually reaches B if the graph 
is connected and finite, as we assumo3 • This method will, 
of course, find the shortest path from A to B, say, of 
length n. Let b be the average number of "children" of a 
node in this tree. (Clearly b is at least one less than the 
average number of branches at eaeh node of the graph.) 
The expected number of steps required by this method iR 

b+b z+b3 + ... +bn-1+!bn R; !bn(b+l)/(b-l) 

If instead we work from both ends, the expected number 
of steps will be about b!n(b+ l)/(b-l). If n is large, this 
is of the order of the square root of the number of steps 
required in one-ended working. 

If we take into account some estimate of distance, it 
will begin to become of valuo when we am within some 
dil:>tance, d, of the goal, where d < n in virtue of our hypo
thesis that the maze is difficult to thread. The tree, or 
the pair of trees, that are generated before the estimation 
of distance becomes of value may be described as tho 
"groping" trees. For one-ended working, the groping 
tree will contain of the order of b"-d stepl:>, whereas. 
for two-ended working, the groping treeR (the closest nodes 
of whieh will be at distance d from one another) will contain 
a number of steps of the order of the square root of thiH 
since the number of generations in each of them will be 
about !(n-d). After the distance estimation begins to 
become useful, the number of steps that remain will be 
negligible compared with the sizes of the groping trees. 
providod that n is large enough. This eompletes tlw 
demonstration of the square root law for sufficiently 
difficult mazes. 

This diseussion can be made more formal by regarding 
the expected number of ehildren of a node as a function of 
the shortest distance, m, to tho goal, or, for two-ended 
working, to tho other tree. Thus we replace b by a fune
tion bm • Then the expected number of I:>teps for onf'
ended working isf(n) defined as 

n-l 

f(n) = I: bnbn- 1 ··· bn .. r 
r=O 

whereas, for two-ended working, it is 2f(!n). Perhaps the 
simplest form to assume for bm is (l-qrn)b. 

It will be interesting to see whether these formulae 
are consistent with the experimental results of the graph
traverser programmeZ, when and if it is modified to cope 
with two-ended working. 

For problems in which the goal is represented by n 
set of more than one node, the method of two-ended 
working generalizes in an obvious manner. But a general
ization of the above formulae would be difficult as it must 
depend on how close the various goal-nodes are to OIle 

another, and also on their individual distances from tIl<' 
"origin", A. But the square root law remains valid f(w 
sufficiently diffieult problems. 
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