Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergence of vancomycin tolerance in Streptococcus pneumoniae


Streptococcus pneumoniae, the pneumococcus, is the most common cause of sepsis and meningitis1. Multiple-antibiotic-resistant strains are widespread, and vancomycin is the antibiotic of last resort2,3. Emergence of vancomycin resistance in this community-acquired bacterium would be catastrophic. Antibiotic tolerance, the ability of bacteria to survive but not grow in the presence of antibiotics, is a precursor phenotype to resistance4. Here we show that loss of function of the VncS histidine kinase of a two-component sensor-regulator system in S. pneumoniae produced tolerance to vancomycin and other classes of antibiotic. Bacterial two-component systems monitor environmental parameters through a sensor histidine-kinase/phosphatase, which phosphorylates/dephosphorylates a response regulator that in turn mediates changes in gene expression. These results indicate that signal transduction is critical for the bactericidal activity of antibiotics. Experimental meningitis caused by the vncS mutant failed to respond to vancomycin. Clinical isolates tolerant to vancomycin were identified and DNA sequencing revealed nucleotide alterations in vncS. We conclude that broad antibiotic tolerance of S.pneumoniae has emerged in the community by a molecular mechanism that eliminates sensitivity to the current cornerstone of therapy, vancomycin.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effect of loss of function of vncR and vncS on bactericidal activity of vancomycin.
Figure 2: Interrelationships of VncR and VncS.
Figure 3: Functional assay of autolytic activity.


  1. Schuchat, A. et al. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N. Engl. J. Med. 337, 970–976 (1997).

    CAS  Article  Google Scholar 

  2. Friedland, I. R. & Istre, G. R. Management of penicillin-resistant pneumococcal infections. Pediatr. Infect. Dis. J. 11, 433–435 (1992).

    CAS  Article  Google Scholar 

  3. American Academy of Pediatrics in Red Book: Report of the Committee on Infectious Diseases 24th edn (ed. Peter, G. 410–419 (Elk Grove Village, (1997).

  4. Tomasz, A., Albino, A. & Zanati, E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 227, 138–140 (1970).

    ADS  CAS  Article  Google Scholar 

  5. Moreillon, P., Markiewicz, Z., Nachman, S. & Tomasz, A. Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob. Agents Chemother. 34, 33–39 (1990).

    CAS  Article  Google Scholar 

  6. Holtje, J. V. & Tuomanen, E. I. The murein hydrolases of Escherichia coli : properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137, 441–454 (1991).

    CAS  Article  Google Scholar 

  7. Pearce, B. J., Yin, Y. B. & Masure, H. R. Genetic identification of exported proteins in Streptococcus pneumoniae. Mol. Microbiol. 9, 1037–1050 (1993).

    CAS  Article  Google Scholar 

  8. Williamson, R. & Tomasz, A. Antiobiotic-tolerant mutants of Streptococcus pneumoniae that are not deficient in autolytic activity. J. Bacteriol. 144, 105–113 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Evers, S. & Courvalin, P. Regulation of VanB-type vancomycin resistance gene expression by the VanSBtwo-component regulatory system in Enterococcus faecalis V583. J. Bacteriol. 178, 1302–1309 (1996).

    CAS  Article  Google Scholar 

  10. Bugg, T. D. H. et al. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30, 10408–10415 (1991).

    CAS  Article  Google Scholar 

  11. Silva,J. C. Haldimann, A., Prahalad, M. K., Walsh, C. T. & Wanner, B. L. In vivo characterization of the type A and B vancomycin-resistant enterococci (VRE) VanRS two-component systems in Escherichia coli : a nonpathogenic model for studying the VRE signal transduction pathways. Proc. Natl Acad. Sci. USA 95, 11951–11956 (1998).

    ADS  CAS  Article  Google Scholar 

  12. Tomasz, A. & Hotchkiss, R. D. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl Acad. Sci. USA 51, 480–487 (1964).

    ADS  CAS  Article  Google Scholar 

  13. Shockley, T. E. & Hotchkiss, R. D. Stepwise introduction of transformable penicillin resistance in pneumococcus. Genetics 64, 397–408 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dowson, C. G. et al. Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus. Soc. Appl. Bacteriol. Symp. Ser. 26, 42S–51S (1997).

    Article  Google Scholar 

  15. Liu, H. H. & Tomasz, A. Penicillin tolerance in multiply drug-resistant natural isolates of Streptococcus pneumoniae. J. Infect. Dis. 152, 365–372 (1985).

    CAS  Article  Google Scholar 

  16. Zighelboim, S. & Tomasz, A. Multiple antibiotic resistance in South African strains of Streptococcus pneumoniae : Mechanism of resistance to beta-lactam antibiotics. Rev. Inf. Dis. 3, 267–276 (1981).

    CAS  Article  Google Scholar 

  17. Murakami, K. & Tomasz, A. Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J. Bacteriol. 171, 874–879 (1989).

    CAS  Article  Google Scholar 

  18. Quagliarello, V. & Scheld, W. Bacterial meningitis: pathogenesis, pathophysiology and progress. N. Engl. J. Med. 327, 864–872 (1992).

    CAS  Article  Google Scholar 

  19. Tauber, M. G. & Zwahlen, A. Animal models of meningitis. Methods Enzymol. 235, 92–106 (1994).

    Google Scholar 

  20. Tuomanen, E. et al. Microbiological and clinical significance of a new property of defective lysis in clinical strains of pneumococci. J. Infect. Dis. 158, 36–43 (1988).

    CAS  Article  Google Scholar 

  21. Novak, R., Braun, J. S., Charpentier, E. & Tuomanen, E. Penicillin tolerance genes of Streptococcus pneumoniae : The ABC-type manganese complex Psa. Mol. Microbiol. 29, 1285–1296 (1998).

    CAS  Article  Google Scholar 

  22. CDC: Interim guidelines for prevention and control of staphylococcal infection associated with reduced susceptibility to vancomycin. Mor. Mortal. Weekly Rep. 46, 626–635 (1997).

  23. Lacks, S. & Hotchkiss, R. D. Astudy of the genetic material determining an enzyme activity in pneumococcus. Biochim. Biophys. Acta 39, 508–517 (1960).

    CAS  Article  Google Scholar 

  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning. A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, Cold Spring Harbor, (1990).

  25. Chen, J. D. & Morrison, D. A. Cloning of Streptococcus pneumoniae DNA fragments in Escherichia coli requires vectors protected by strong transcriptional terminators. Gene 55, 179–187 (1987).

    CAS  Article  Google Scholar 

  26. Holman, T. R., Wu, Z., Wanner, B. L. & Walsh, C. T. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33, 4625–4631 (1994).

    CAS  Article  Google Scholar 

  27. Parkinson, J. S. & Kofoid, E. C. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26, 71–112 (1992).

    CAS  Article  Google Scholar 

  28. Stock, J. B., Ninfa, A. J. & Stock, A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53, 450–490 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Hackert, E. & Stock, A. M. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5, 109–124 (1997).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by grants from the NIH (to E.T.), the Cancer Center CORE Grant and the American Lebanese Syrian Associated Charities and åke Wiberg Foundation. We thank J. S. Braun for help with the animal model, J. Li for technical assistance and P. Murray for helpful suggestions and discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. Tuomanen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Novak, R., Henriques, B., Charpentier, E. et al. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature 399, 590–593 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing