Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamics of individual flexible polymers in a shear flow

Abstract

Polymer dynamics are of central importance in materials science, mechanical engineering, biology and medicine1,2. The dynamics of macromolecular solutions and melts in shear flow are typically studied using bulk experimental methods such as light and neutron scattering and birefringence3,4. But the effect of shear on the conformation and dynamics of individual polymers is stillnot well understood5,6,7. Here we describe observations of the real-time dynamics of individual, flexible polymers (fluorescently labelled DNA molecules8,9,10,11,12,13,14,15) under a shear flow. The sheared polymers exhibit many types of extended conformation with an overall orientation ranging from parallel to perpendicular with respect to the flow direction. For shear rates much smaller than the inverse of the relaxation time of the molecule, the relative populations of these two main types of conformation are controlled by the rate of the shear flow. These results question the adequacy of assumptions made in standard models of polymer dynamics5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shear-flow experimental set-up and sketch of an individual DNA molecule.
Figure 2: The different conformations of DNA under shear.
Figure 3: Dynamic motion of DNA molecules experiencing well defined shear strains.
Figure 4: Quantitative characterization of the conformation of individual DNA molecules under shear.

Similar content being viewed by others

References

  1. Munk, P. Introduction to Macromolecular Science(Wiley & Sons, New York, (1989).

    Google Scholar 

  2. Hoffman, A., Ratner, B. & Horbett, T. Polymers as Biomaterials(Plenum, New York, (1995).

    Google Scholar 

  3. Fuller, G. G. Optical Rheometry of Complex Fluids(Oxford Univ. Press, New York, (1995).

    Google Scholar 

  4. Janeschitz-Kriegl, H. Polymer Melt Rheology and Flow Birefringence(Springer, New York, (1983).

    Book  Google Scholar 

  5. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics(Clarendon, Oxford, (1986).

    Google Scholar 

  6. de Gennes, P. G. Scaling Concepts in Polymer Physics(Cornell Univ. Press, Ithaca, (1991).

    Google Scholar 

  7. de Gennes, P. G. Molecular individualism. Science 276, 199 (1997).

    Article  Google Scholar 

  8. Matsumoto, M. et al. Direct observation of Brownian-motion of macromolecules by fluorescence microscope. J. Polym. Sci. 30, 779–783 (1992).

    Article  CAS  Google Scholar 

  9. Perkins, T. T., Quake, S. R., Douglas, D. E. & Chu, S. Relaxation of a single DNA molecule observed by optical microscopy. Science 264, 822–826 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Perkins, T. T., Smith, D. E. & Chu, S. Single polymer dynamics in an elongational flow. Science 276, 2016–2021 (1997).

    Article  CAS  Google Scholar 

  11. Schwartz, D. C. & Koval, M. Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature 338, 520–522 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Shivashankar, G. & Libchaber, A. Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer. Appl. Phys. Lett. 7, 3727–3729 (1997).

    Article  ADS  Google Scholar 

  13. Smith, D. E., Perkins, T. T. & Chu, S. Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372–1373 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Wirtz, D. Direct measurement of the transport properties of a single DNA molecule. Phys. Rev. Lett. 75, 2436–2439 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Morikawa, K. & Yanagida, M. Visualization of individual DNA molecules in solution by light microscopy: DAPI staining method. J. Biochem. 89, 693–696 (1981).

    Article  CAS  Google Scholar 

  17. Archer, L. A., Larson, R. G. & Chen, Y. L. Direct measurement of slip in sheared polymer solutions. J.Fluid Mech. 301, 133–151 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Matsumoto, S., Morikawa, K. & Yanagida, M. Light microscopic structure of DNA in solution studied by the 4′,6-diamidinio-2-phenylindole staining method. J. Mol. Biol. 152, 501–516 (1981).

    Article  CAS  Google Scholar 

  19. Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922).

    Article  ADS  Google Scholar 

  20. Leal, L. G. & Hinch, E. J. The effect of weak Brownian rotations on particles in shear flow. J. Fluid Mech. 46, 685–703 (1971).

    Article  ADS  Google Scholar 

  21. Hinch, E. J. The deformation of a nearly straight thread in a shearing flow with weak Brownian motions. J. Fluid Mech. 75, 765–775 (1976).

    Article  ADS  Google Scholar 

  22. Hinch, E. J. The distortion of a flexible inextensible thread in a shearing flow. J. Fluid Mech. 74, 317–333 (1976).

    Article  ADS  Google Scholar 

  23. Hinch, E. J. Mechanical models of dilute polymer solutions in strong flows. Phys. Fluids 20, S22–S30 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Xu, J., Palmer, A. & Wirtz, D. Rheology and microrheology of semiflexible polymer solutions: actin filament networks. Macromolecules 31, 6486–6492 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Ostap, E. M., Yanagida, T. & Thomas, D. D. Orientational distribution of spin-labeled actin oriented by flow. Biophys. J. 63, 966–975 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ferro, L. Archer, J. Harden, D. Lavan, and J. van Zanten for discussions. This work was supported by NASA (D.W.), ACS-PRF (D.W.), NSF (D.W.), the Whitaker Foundation (D.W.), Merck, Inc. (D.W.) ARO (G.B.), and IMRE (G.B.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Wirtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeDuc, P., Haber, C., Bao, G. et al. Dynamics of individual flexible polymers in a shear flow. Nature 399, 564–566 (1999). https://doi.org/10.1038/21148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21148

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing