Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metabolism and Sodium Transport in the Isolated Rat Intestine

Abstract

IT is well known that sodium, is actively transported through many biological membranes1–7 and several authors have also determined the amount of energy necessary for this8–18. The ratio between energy and transported sodium, has usually been calculated by determining the increase of oxygen consumption (or lactic acid production) and the associated increase of sodium transport. These increases were obtained by modifying the quantity of available sodium8,10,11,15,16, or by stimulating the sodium pump (posthypophyseal hormones)8,9 or by modifying the quantity of chemical energy at the disposal of the membrane13,26. In this work the third procedure has been followed, and results are reported concerning the relationship between the sodium transport, the oxygen consumption and the lactic acid production in the isolated rat intestine perfused in vitro with different concentrations of glucose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Curran, P. F., J. Gen. Physiol., 43, 1137 (1960).

    Article  CAS  Google Scholar 

  2. Clarkson, T. W., and Rothstein, A., Amer. J. Physiol., 199, 898 (1960).

    Article  CAS  Google Scholar 

  3. Ussing, H. H., Acta Physiol. Scand., 17, 1 (1949).

    Article  CAS  Google Scholar 

  4. Leaf, A., Anderson, J., and Page, L. B., J. Gen. Physiol., 41, 657 (1958).

    Article  CAS  Google Scholar 

  5. Diamond, J. M., J. Physiol., 161, 474 (1962).

    Article  CAS  Google Scholar 

  6. Solomon, S., J. Cell. Comp. Physiol., 49, 351 (1957).

    Article  CAS  Google Scholar 

  7. Giebisch, G., J. Cell. Comp. Physiol., 51, 221 (1958).

    Article  CAS  Google Scholar 

  8. Zerahn, K., Universitetsforlaget I Aarhus 1958, Inaug. Diss., Copenhagen (1958).

    Google Scholar 

  9. Leaf, A., and Renshaw, A., Biochem, J., 65, 82 (1957).

    Article  CAS  Google Scholar 

  10. Leaf, A., Page, L. B., and Anderson, J., J. Biol. Chem., 234, 1625 (1959).

    CAS  PubMed  Google Scholar 

  11. Lassen, N. A., Lassen, U., Munck, O., and Thaysen, J. H., Presse Médicale, 69, 1259 (1961).

    CAS  PubMed  Google Scholar 

  12. Ussing, H. H., in Methods of Isotopic Tracers Applied to the Study of Active Ion Transport, edit. by Coursaget, J., 139 (Pergamon Press, London, 1959).

    Google Scholar 

  13. Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., and Shaw, T. I., J. Physiol., 152, 561 (1960).

    Article  CAS  Google Scholar 

  14. Leaf, A., and Renshaw, A., Biochem. J., 65, 90 (1957).

    Article  CAS  Google Scholar 

  15. Kramer, K., and Deetjen, P., in Oxygen in the Animal Organism, edit. by Dickens, F., and Neil, E., 411 (Pergamon Press, London, 1964).

    Book  Google Scholar 

  16. Kiil, F., Auckland, K., and Refsum, H., Amer. J. Physiol., 201, 511 (1961).

    Article  CAS  Google Scholar 

  17. Keynes, R. D., and Maisel, G. W., Proc. Roy. Soc., B., 142, 383 (1954).

    ADS  CAS  Google Scholar 

  18. Hodgkin, A. L., and Keynes, R. D., Symp. Soc. Exp. Biol., 8, 423 (1954).

    CAS  Google Scholar 

  19. Wilson, T. H., and Wiseman, G., J. Physiol., 123, 116 (1954).

    Article  CAS  Google Scholar 

  20. Krebs, H. A., and Henseleit, K., Z. Physiol. Chem., 210, 33 (1932).

    Article  CAS  Google Scholar 

  21. Gleichmann, U., and Luebbers, D. W., Pflügers Archives, 271, 456 (1960).

    Article  CAS  Google Scholar 

  22. Scholz, R., Schmitz, H., Bücher, T., and Lampen, J. O., Biochem. Z., 331, 71 (1959).

    CAS  Google Scholar 

  23. West, E. S., and Todd, W. R., Textbook of Biochemistry, third ed. (The Macmillan Company, New York, 1962).

    Google Scholar 

  24. Croxton, F. E., Elementary Statistics (Dover Publications Inc., New York, 1959).

    MATH  Google Scholar 

  25. Zerahn, K., in Symposium on Membrane Transport and Metabolism, edit. by Kleinzeller, A., and Kotyk, A., 237 (Publishing House of the Czecho-slovak Academy of Sciences, Prague, 1961).

    Google Scholar 

  26. Faelli, A., and Esposito, G., Experientia, 22, 123 (1966).

    Article  CAS  Google Scholar 

  27. Huggett, A. St. G., and Nixon, D. A., Lancet, 2, 368 (1957).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ESPOSITO, G., FAELLI, A. & CAPRARO, V. Metabolism and Sodium Transport in the Isolated Rat Intestine. Nature 210, 307–308 (1966). https://doi.org/10.1038/210307a0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/210307a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing