Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

Abstract

Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature1. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property1,2,3. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced4. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65 °C; this is analogous to previous findings with mesophilic ADH at 25 °C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2: Competitive primary (1°) and secondary (2°) kinetic isotope effects (KIEs) on logarithmic abscissa versus 1/T, ranging from 5 °C to 65 °C.
Figure 3: a, Arrhenius plot of ln (k) against 1/T for a light isotope (L1) and a heavier isotope (L2).
Figure 4

References

  1. Kohen, A. & Klinman, P. J. Enzyme catalysis: beyond classical paradigms. Acc. Chem. Res. 31, 397– 404 (1998).

    CAS  Article  Google Scholar 

  2. Bell, R. P. The Tunneling Effect in Chemistry (Chapman & Hall, London, (1980).

    Book  Google Scholar 

  3. Steinfeld, J. I., Francisco, J. S. & Hase, W. L. (eds) Chemical Kinetics and Dynamics (Prentice Hall, Upper Saddle River, NJ, (1998).

    Google Scholar 

  4. Benderskii, V. A., Makarov, D. E. & Wight, C. A. Adv. Chem. Phys. 88, 151– 207 (1994).

    Book  Google Scholar 

  5. Cha, Y., Murray, C. J. & Klinman, J. P. Hydrogen tunneling in enzyme reactions. Science 243, 1325–1330 ( 1989).

    ADS  CAS  Article  Google Scholar 

  6. Brooks, C. L. I., Karplus, M. & Pettitt, B. M. Adv. Chem. Phys. 71, 14– 23; 33–59; 75–233 ; (1988).

    Book  Google Scholar 

  7. Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. Crystalline ribonuclease-A loses function below the dynamical transition at 220-K. Nature 357, 423–424 ( 1992).

    ADS  CAS  Article  Google Scholar 

  8. Rudd, P. M.et al. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33, 17–22 (1994).

    CAS  Article  Google Scholar 

  9. Kohen, A., Jonsson, T. & Klinman, P. J. Effect of protein glycosylation on catalysis: changes in hydrogen tunneling and enthalpy of activation in the glucose oxidase reaction. Biochemistry 36, 2603– 2611 (1997).

    CAS  Article  Google Scholar 

  10. Cannio, R., Rossi, M. & Bartolucci, S. Afew amino acid substitutions are responsible for the higher thermostability of a novel NAD(+)-dependent bacillar alcohol dehydrogenase. Eur. J. Biochem. 22, 345– 352 (1994).

    Article  Google Scholar 

  11. Guagliardi, A.et al. Purification and characterization of the alcohol dehydrogenase from a novel strain of bacillus stearothermophilus growing at 70 °C. Int. J. Biochem. Cell Biol. 28, 239– 246 (1996).

    CAS  Article  Google Scholar 

  12. Lakatos, S., Halasz, G. & Zavodszky, P. Conformational stability of lactate dehydrogenase from Bacillus thermus-aquaticus. Biochem. Soc. Trans. 6, 1195–1197 (1978).

    CAS  Article  Google Scholar 

  13. Zavodszky, P., Kardos, J., Svingor, A. & Petsko, G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of protein. Proc. Natl Acad. Sci. USA 95, 7406– 7411 (1998).

    ADS  CAS  Article  Google Scholar 

  14. Varley, P. G. & Pain, R. H. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol. 220, 531– 538 (1991).

    CAS  Article  Google Scholar 

  15. Wrba, A., Schweiger, A., Schultes, V., Jaenicke, R. & Zavodszky, P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry 29, 7584–7592 ( 1990).

    CAS  Article  Google Scholar 

  16. Lin, S. & Saunders, W. H. Tunneling in elimination reactions—structural effects on the secondary beta-tritium isotope effects. J. Am. Chem. Soc. 116, 6107–6110 ( 1994).

    CAS  Article  Google Scholar 

  17. Saunders, W. H. Calculations of isotope effects in elimination reactions. New experimental criteria for tunneling in slow proton transfers. J. Am. Chem. Soc. 107, 164–169 ( 1985).

    CAS  Article  Google Scholar 

  18. Rucker, J. & Klinman, J. P. Computational study of tunneling and coupled motion. J. Am. Chem. Soc. 121, 1997–2006 (1999).

    CAS  Article  Google Scholar 

  19. Melander, L. & Saunders, W. H. Reaction Rates of Isotopic Molecules (Krieger, Malabar, FL, (1987).

    Google Scholar 

  20. Vihinen, M. Relationship of protein flexibility to thermostability. Protein Eng. 1, 477–480 ( 1987).

    CAS  Article  Google Scholar 

  21. Vol'kenshtein, M. V., Dogonadze, R. R., Madumarov, A. K., Urushadze, Z. D. & Kharkats, Y. I. The theory of enzyme catalysis. Mol. Biol. 6, 347– 353 (1972).

    CAS  PubMed  Google Scholar 

  22. Hwang, J. K. & Warshel, A. On the relationship between the dispersed polaron and spin-boson models. Chem. Phys. Lett. 271, 223–225 (1997).

    ADS  CAS  Article  Google Scholar 

  23. Antoniou, D. & Schwartz, S. D. Large kinetic isotope effect in enzymatic proton transfer and the role of substrate oscillations. Proc. Natl Acad. Sci. USA 94, 12360– 12365 (1997).

    ADS  CAS  Article  Google Scholar 

  24. Borgis, D. & Hynes, J. T. in The Enzyme Catalysis Process (eds Cooper, A., Houben, J. & Chien, L.) 293– 303 (Plenum, New York, (1989).

    Book  Google Scholar 

  25. Bruno, W. J. & Bialek, W. Vibrationally enhanced tunneling as a mechanism for enzymatic hydrogen transfer. Biophys. J. 63, 689–699 (1992).

    ADS  CAS  Article  Google Scholar 

  26. Borgis, D. & Hynes, J. T. Dynamical theory of proton tunneling transfer rates in solution—general formulation. Chem. Phys. 170, 315–346 ( 1993).

    CAS  Article  Google Scholar 

  27. Antoniou, D. & Schwartz, S. D. Activated chemistry in the presence of a strongly symmetrically coupled vibration. J. Chem. Phys. 108, 3620–3625 (1998).

    ADS  CAS  Article  Google Scholar 

  28. Somero, G. N. & Siebenaller, J. F. Inefficient lactate dehydrogenases of deep-sea fishes. Nature 282, 100– 102 (1979).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF (A.K. and J.P.K.) and EC-projects (R.C. and S.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith P. Klinman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kohen, A., Cannio, R., Bartolucci, S. et al. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase . Nature 399, 496–499 (1999). https://doi.org/10.1038/20981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20981

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing