was continued for 7 weeks, during which period all the plants flowered.

No symptoms indicating abnormal growth or development could bo detected among the rotated plants. The effect of anti-clockwise rotation was not re-examined.

Avena. Husked oats (Avena sativa, variety Burke) were soaked overnight in tap-water in darkness at $5^{\circ} \mathrm{C}$, and then sown in two shallow trays on moist facial tissuo with the embryo facing upwards. Each tray contained 40-50 seedlings. Using a clock-driven turntable, with a vertical axis, one tray was rotated in either a clockwiso or anti-cloekwise direction at one revolution a day. The non-rotated tray served as a control. The experiments wore performed at $25^{\circ} \mathrm{C}$ and high relative humidity inside a metal incubator, which was kept in a constant-temporature darkroom so that all oporations and inspections could be carried out in green light of predominantly $546 \mathrm{~m} \mu$. After 3 days the length of the shoot (coleoptile and mosocotyl) and the longest root of each secdling was moasured to the nearest millimetre. Seven clockwise replicates, followed by eight anti-clockwise ones, were performed at weokly intervals.

Rotation of the seedlings in either direction produced no visiblo effects. The percentage moan difference between shoot and root lengths of stationary and rotated plants is shown in Table 1. With one exception, the extension growth of the root and shoot of tho rotated plants did not differ significantly from that of the stationary plants, in any of the replicates. These results aro in contrast with those of Jones, where in nine replicates the avorage reductions in coleoptile and root final length in clockwise rotated plants wero 6.1 and 8.6 per cent rospectively, while the corresponding averago increases in anti-clookwise rotated plants were $5 \cdot 6$ and $10 \cdot 2$ per cent. Furthermore, the direction of rotation produced a consistent response in each replicate. Jones used a 5 -day rotational period, while the results summarized in Table 1 are for a 3-day poriod; nevertheless, tho plants were growing actively throughout the 3 days, so that an appreciable effect of rotation on the elongation rate of the shoot or root should have been apparent by the third day. Despite the absence of a significant responso to rotation in tho majority of replicates, examination of Table 1 shows that in each of the first seven, where the plants woro rotated clockwise, the shoots grow less than those of the controls. Since the trend of this difference is in agreement with Jones's conclusions, the offoct of clockwise rotation on the oxtension growth of the etiolated shoot of the Avena scedling was further examined in a second experiment, in which the experimental technique used by Jones was more closely followed.

Avena seedlings were germinated using the method already described hore and kopt under the same environ-

Pereentage difference of root or shoot final Iength from stationary control						
Clockwise rotation						
1	$-10 \cdot 5 \pm 4 \cdot 3^{*}$		$-5 \cdot 8 \pm 5 \cdot 8$			
2	$-1 \cdot 1 \pm 3 \cdot 3 \dagger$		-1.4 ± 6.0			
3	$-0 \cdot 2 \pm 8 \cdot 0$			-0.6	$6 \cdot 2$	
4	$-3 \cdot 4 \pm 5 \cdot 1$			-5.	$6 \cdot 7$	
5	$-3 \cdot 7 \pm 4 \cdot 0$			$+0 \cdot 3$	+8.4	
6	$-2 \cdot 9 \pm 5 \cdot 3$			-0.8	8.9	
7	$-4.4 \pm 7 \cdot 8$			-1.8	$5 \cdot 4$	
Mean length for all replicates (mm)	s	12	Difference (\%)	s	R	Difference (\%)
	38.8	$35 \cdot 3$	4-1	$64 \cdot 0$	$63 \cdot 4$	Differ
	Anti-clockwise rotation					
8	$+2 \cdot 5 \pm 3 \cdot 1$			$+7.5 \pm 5 \cdot 6$		
9	-0.3 ± 3.8			+9.2	$6 \cdot 2$	
10	$+1 \cdot 5 \pm 3.4$			+3.	$5 \cdot 8$	
11	$-2 \cdot 7 \pm 4.4$			$+5$.	$6 \cdot 6$	
12	$+1.5 \pm 4.5$			$+0$.	7.8	
13	+0.6 ± 3.6			$+7.7$	$5 \cdot 3$	
14	$+1.3 \pm 3 \cdot 8$			$+0$.	$5 \cdot 9$	
15	-3.0 ± 4.1			-2.9	$8 \cdot 1$	
Mean length for	S	Il	$\begin{gathered} \text { Difference (\%) } \\ 0 \end{gathered}$	$\begin{gathered} S \\ 70 \cdot 6 \end{gathered}$	$\begin{gathered} R \\ 73 \cdot 3 \end{gathered}$	$\begin{gathered} \text { Difference (} \% \text {) } \\ 3-8 \end{gathered}$
all replicates	$36 \cdot 4$	36-4				
* Significant \pm Standard erx S'. Stationary	at $P<$ ror. contro	01. $\boldsymbol{R}, \mathrm{R}$	otated.			

Table 2. Effeeot of Clocewise Rotation around a Vertical axis at 1 Rev a day on Shoot Extrision Growtif in Avena Seedingas Results for 15 replicates

	Mean shoot length (mm)	Mean differencc Stationary	Th
Total No. shoots			
per treatment			

mental conditions as in the previous experiment. On the second day, the seedlings were transferred from the shallow trays to two perforated plastic holders each holding thirty seedlings, which were then set up in two glass beakers containing tap-water, so that the roots of the seedlings just touched the surface of the water. Ono beaker was rotated clockwise about a vertical axis at one revolution a day, while the other was kept, stationary. After 2 days, the length of each seedling shoot was measured to the nearest millimetre. The experiment was replicated fifteen times. The results, summarized in Table 2, show that shoots of rotated and stationory plants attoined the same mean length. In individual replicates, the mean percentage difference between the length of rotated and stationary shoots ranged from -6.5 per cent to +10.0 per cent; but in no case was this differenco statistically significant. From these results, and those for the preceding oxperiment, it is apparent that the extension growths of the root and shoot of the scedling of the oat variety used were not appreciably affected by daily rotation about a vertical axis in either direction.

While these negative results do not rule out the possibility that, under some onvironmental conditions, eyclamen and Avena plants may respond to slow rotation about a vertical axis, it can be conoluded that the responses in question, if they exist, are not readily reproducible in the same way as, for example, are responses to darknoss and temperature.
J. H. Palmer *

C.S.I.R.O.

Irrigation Research Laboratory,
Griffith, Australia.

* Present address: School of Biological Sciences, University of New South Wales, Sydney.
${ }^{1}$ Joncs, R. T., Nature, 185, 775 (1960).
${ }^{2}$ Pittman, U. J., Canad. J. Plant S'ci., 42, 430 (1962).
${ }^{3}$ Pittman, U. J., Canad. J. Plant Sci., 44, 283 (1964).
It is pleasing to see a renewal of interest in plant responses to specific rotations. Unfortunately Dr. Palmer's oxperiments with Avena are not strictly comparable with mine of 1960 in at least two features, that of the variety of oat used and in his choice of a 3-day period. T understand that the variety 'Milford' is now unoblainable, but I would mention that with it I was able to experiment, with rotating seedlings in a null (magnetic) field, with negative response, that is, the direction of rotation did not affeet the growth of shoots; n similar result was obtained with strong magnetic fields.

I would suggest that it might be worth while to carry out experiments with rotations in weak magnetic fields and that this might lead to some explanation of the phenomenon.
R. T. Jones

Department of Biophysics,
King's College, London.

Mutants of Puccinia graminis avenae induced by Ethyl Methane Sulphonate

Spontaneous mutations affecting urodospore colour in cereal rusts have been observed by several investigators. Tho mode of inheritance of the mutant colours in the wheat stern rust fungus P'uccinia graminis tritici \mathbf{E}. and H . and oat stom rust fungus P. graminis avenae E . and H . has been shown to follow a simple Mendelian pattern ${ }^{1,2}$ and such mutants servo as particularly uscful markers in investigations of the role of assexual recombination in this group of fungi. In an attempt to produce uredospore

