Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simulation of recent northern winter climate trends by greenhouse-gas forcing


The temperature of air at the Earth's surface has risen during the past century1, but the fraction of the warming that can be attributed to anthropogenic greenhouse gases remains controversial. The strongest warming trends have been over Northern Hemisphere land masses during winter, and are closely related to changes in atmospheric circulation. These circulation changes are manifested by a gradual reduction in high-latitude sea-level pressure, and an increase in mid-latitude sea-level pressure associated with one phase of the Arctic Oscillation (a hemisphere-scale version of the North Atlantic Oscillation)2. Here we use several different climate-model versions to demonstrate that the observed sea-level-pressure trends, including their magnitude, can be simulated by realistic increases in greenhouse-gas concentrations. Thus, although the warming appears through a naturally occurring mode of atmospheric variability, it may be anthropogenically induced and may continue to rise. The Arctic Oscillation trend is captured only in climate models that include a realistic representation of the stratosphere, while changes in ozone concentrations are not necessary to simulate the observed climate trends. The proper representation of stratospheric dynamics appears to be important to the attribution of climate change, at least on a broad regional scale.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global annual-average surface temperature anomalies (°C).
Figure 2: Northern Hemisphere wintertime climate trends.
Figure 3: Surface air temperature (SAT) and the Arctic Oscillation (AO).


  1. Hansen, J., Ruedy, R., Sato, M. & Reynolds, R. Global surface air temperature in 1995: Return to pre-Pinatubo level. Geophys. Res. Lett. 23, 1665–1668 (1996).

    Article  ADS  Google Scholar 

  2. Thompson, D. W. J., Wallace, J. M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300 (1998).

    Article  ADS  Google Scholar 

  3. Oort, A. H. & Liu, H.-Z. Upper-air temperature trends over the globe. J. Clim. 6, 292–307 (1993).

    Article  ADS  Google Scholar 

  4. Spencer, R. W. & Christy, J. R. Precision lower stratospheric temperature monitoring with the MSU: Technique, validation, and results 1979–1991. J. Clim. 6, 1194–1204 (1993).

    Article  ADS  Google Scholar 

  5. Pawson, S., Labitzke, K. & Leder, S. Stepwise changes in stratospheric temperature. Geophys. Res. Lett. 25, 2157–2160 (1998).

    Article  ADS  Google Scholar 

  6. Kodera, K. & Koide, H. Spatial and seasonal characteristics of recent decadal trends in the Northern Hemisphere troposphere and stratosphere. J. Geophys. Res. 102, 19433–19447 (1997).

    Article  ADS  Google Scholar 

  7. Zurek, R. W., Manney, G. L., Miller, A. J., Gelman, M. E. & Nagatani, R. M. Interannual variability of the north polar vortex in the lower stratosphere during the UARS mission. Geophys. Res. Lett. 23, 289–292 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Baldwin, M. P., Cheng, X. & Dunkerton, T. J. Observed correlations between winter mean tropospheric and stratospheric circulation anomalies. Geophys. Res. Lett. 21, 1141–1144 (1994).

    Article  ADS  Google Scholar 

  9. Perlwitz, J. & Graf, H.-F. The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J. Clim. 8, 2281–2295 (1995).

    Article  ADS  Google Scholar 

  10. Kodera, K., Chiba, M., Koide, H., Kotoh, A. & Nikaidou, Y. Interannual variability of the winter stratosphere and troposphere in the Northern Hemisphere. J. Meteorol. Soc. Jpn 74, 365–382 (1996).

    Article  Google Scholar 

  11. Kitoh, A. Koide, H., Kodera, K., Yukimoto, S. & Noda, A. Interannual variability in the stratosphere-troposphere circulation in a coupled ocean-atmosphere GCM. Geophys. Res. Lett. 23, 543–546 (1996).

    Article  ADS  Google Scholar 

  12. Rind, D., Shindell, D., Lonergan, P. & Balachandran, N. K. Climate change and the middle atmosphere. Part III: The doubled CO2climate revisited. J. Clim. 11, 876–894 (1998).

    Article  ADS  Google Scholar 

  13. Palmer, T. N. Anonlinear dynamical perspective on climate change. Weather 48, 314–326 (1993).

    Article  ADS  Google Scholar 

  14. Hurrell, J. W. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 23, 665–668 (1996).

    Article  ADS  Google Scholar 

  15. Hansen, al. Efficient three-dimensional global models for climate studies: Models I and II. Mon. Weath. Rev. 111, 609–662 (1983).

    Article  ADS  Google Scholar 

  16. Rind, D., Suozzo, R., Balachandran, N. K., Lacis, A. & Russell, G. The GISS global climate/middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci. 45, 329–370 (1988).

    Article  ADS  Google Scholar 

  17. Russell, G. L., Miller, J. R. & Rind, D. Acoupled atmosphere-ocean model for transient climate change. Atmosphere-Ocean 33, 683–730 (1995).

    Article  Google Scholar 

  18. Bretherton, C. S., Smith, C. & Wallace, J. M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 5, 541–560 (1992).

    Article  ADS  Google Scholar 

  19. Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weath. Rev. 109, 784–812 (1981).

    Article  ADS  Google Scholar 

  20. Graf, H.-F., Kirchner, I. & Perlwitz, J. Changing lower stratospheric circulation: The role of ozone and greenhouse gases. J. Geophys. Res. 103, 11251–11261 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Volodin, E. M. & Galin, V. Interpretation of winter warming at Northern Hemisphere continents 1977–94. J. Clim.(in the press).

  22. Shindell, D. T., Rind, D. & Lonergan, P. Increased polar stratospheric ozone losses and delayed eventual recovery due to increasing greenhouse gas concentrations. Nature 392, 589–592 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Wallace, J. M., Zhang, Y. & Bajuk, L. Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Clim. 9, 249–259 (1996).

    Article  ADS  Google Scholar 

  24. Broccoli, A. J., Lau, N. C. & Nath, M. J. The cold ocean warm land pattern: Model simulation and relevance to climate change detection. J. Clim. 11, 2743–2763 (1998).

    Article  ADS  Google Scholar 

  25. Boville, B. A. & Cheng, X. Upper boundary effects in a general circulation model. J. Atmos. Sci. 45, 2591–2606 (1988).

    Article  ADS  Google Scholar 

  26. Austin, J., Butchart, N. & Swinbank, R. S. Sensitivity of ozone and temperature to vertical resolution in a GCM with coupled stratospheric chemistry. Q.J.R. Meteorol. Soc. 123, 1405–1431 (1997).

    Article  ADS  Google Scholar 

  27. Shindell, D. T., Rind, D., Balachandran, N., Lean, J. & Lonergan, P. Solar cycle variability, ozone, and climate. Science 284, 305–308 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Kodera, K. On the origin and nature of interannual variability of the winter stratospheric circulation in the Northern Hemisphere. J. Geophys. Res. 100, 14077–14087 (1995).

    Article  ADS  Google Scholar 

  29. Gong, D. & Wang, S. Definition of Antarctic oscillation index. Geophys. Res. Lett. 26, 459–462 (1999).

    Article  ADS  Google Scholar 

  30. North, G. R., Bell, T. L., Cahalan, R. F. & Moeng, F. J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weath. Rev. 110, 699–706 (1982).

    Article  ADS  Google Scholar 

  31. Rosenzweig, al. Building Linkages among Climate, Impacts, and Economics: A Multi-dimensional Approach to Integrated Assessment(Columbia Earth Institute & NASA GISS, New York, NY, (1998).

    Google Scholar 

  32. Corti, S., Molteni, F. & Palmer, T. N. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999).

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. Hansen, D. Rind and G. Russell for making available their numerical experiments, D. Thompson for providing analyses of the observations and P. Lonergan for assistance with model output. We also thank P. Stone and J. M. Wallace for their comments on earlier drafts of this Letter. G.A.S. was supported by a NOAA postdoctoral fellowship in Climate and Global Change administered by the UCAR Visiting Scientist Program. R.L.M. is supported by the NOAA Atlantic Climate Change Program. Stratospheric modeling at GISS is supported by the NASA Atmospheric Chemistry Modeling and Analysis Program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Drew T. Shindell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shindell, D., Miller, R., Schmidt, G. et al. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399, 452–455 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing