The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis

Abstract

Hypoxia-inducible factor-1 (HIF-1) has a key role in cellular responses to hypoxia, including the regulation of genes involved in energy metabolism, angiogenesis and apoptosis1,2,3,4. The α subunits of HIF are rapidly degraded by the proteasome under normal conditions, but are stabilized by hypoxia5. Cobaltous ions or iron chelators mimic hypoxia, indicating that the stimuli may interact through effects on a ferroprotein oxygen sensor6,7. Here we demonstrate a critical role for the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL in HIF-1 regulation. In VHL-defective cells, HIF α-subunits are constitutively stabilized and HIF-1 is activated. Re-expression of pVHL restored oxygen-dependent instability. pVHL and HIF α-subunits co-immunoprecipitate, and pVHL is present in the hypoxic HIF-1 DNA-binding complex. In cells exposed to iron chelation or cobaltous ions, HIF-1 is dissociated from pVHL. These findings indicate that the interaction between HIF-1 and pVHL is iron dependent, and thatit is necessary for the oxygen-dependent degradation of HIF α-subunits. Thus, constitutive HIF-1 activation may underlie the angiogenic phenotype of VHL-associated tumours. The pVHL/HIF-1 interaction provides a new focus for understanding cellular oxygen sensing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effect of pVHL on oxygen-regulated gene expression.
Figure 2: Effect of pVHL on HIF-1 and HRE activity.
Figure 3: Association of pVHL with HIF-1.
Figure 4: Effect of cobaltous ions and iron chelation on the pVHL/HIF-1 interaction.
Figure 5: Effect of pVHL on HIFα stability and ODD domain function.

References

  1. 1

    Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor I is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Bunn, H. F. & Poyton, R. O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839– 885 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485 –90 (1998).

    ADS  CAS  Article  Google Scholar 

  4. 4

    An, W. G. et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392, 405–408 (1998).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an oxygen-dependent domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 ( 1998).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Goldberg, M. A., Dunning, S. P. & Bunn, H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415 (1988).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wang, G. L. & Semenza, G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82 , 3610–3615 (1993).

    CAS  PubMed  Google Scholar 

  8. 8

    Warburg, O. The Metabolism of Tumours (Arnold Constable, London, ( 1930).

    Google Scholar 

  9. 9

    Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kaelin, W. G. & Maher, E. R. The VHL tumour-suppressor gene paradigm. Trends Genet. 14, 423– 426 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Gnarra, J. R. et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc. Natl Acad. Sci. USA 93, 10589– 10594 (1996).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. J & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Dang, C. V. & Semenza, G. L. Oncogenic alterations of metabolism. Trends Biochem. Sci. 24, 68– 72 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Huang, L. E., Arany, Z., Livingston, D. M. & Bunn, H. F. Activation of hypoxia-inducible transcription factor depends primarily on redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32253–32259 ( 1996).

    CAS  Article  Google Scholar 

  16. 16

    Wiesener, M. S. et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92, 2260–2268 ( 1998).

    CAS  PubMed  Google Scholar 

  17. 17

    Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W. G. J Tumour supression by the human von Hippel-Lindau gene product. Nature Med. 1, 822–826 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. J. Biol. Chem. 272, 22642– 22647 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Pause, A. et al. the von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156– 2161 (1997).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Lonergan, K. M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell Biol. 18, 732– 741 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Maxwell, P. H. et al. Hypoxia inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Zelzer, E. et al. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1α/ARNT. EMBO J. 17, 5083 –5094 (1998).

    Article  Google Scholar 

  23. 23

    Duan, D. R. et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402– 1406 (1995).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Ohh, M. et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1, 959–968 ( 1998).

    CAS  Article  Google Scholar 

  25. 25

    Wood, S. M. et al. Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 α-subunit (HIF-1α). J. Biol. Chem. 273, 8360–8368 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Fandrey, J., Frede, S. & Jelkmann, W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem. J. 303, 507– 510 (1994).

    CAS  Article  Google Scholar 

  27. 27

    Iwai, K. et al. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl Acad. Sci. USA 95, 4924– 4928 (1998).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Ho, V. T. & Bunn, H. F. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem. Biophys. Res. Commun. 223, 175–180 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genet. 7, 85– 90 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank W. Kaelin, C. Buys and M. Lerman for cell lines, and N. Proudfoot, A.Harris, D. Gillespie, J. O'Rourke, Y.-M. Tian and L. Nicholls. Financial support was from the Wellcome Trust, the Barnes Trust, the Deutsche Forschungsgemeinschaft, the Cancer Research Campaign, Action Research and the Medical Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter J. Ratcliffe.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maxwell, P., Wiesener, M., Chang, GW. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999). https://doi.org/10.1038/20459

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing