No. 4952 September 26, 1964

Ergothioneine is known to occur in some mammalian tissues, although earlier workers have reported its absence from brain³, and Melville et al. have developed a highly specific and relatively sensitive method for its quantitative determination in tissue extracts⁴. We have applied the method to brain with the results, for the rabbit, given in Table 1.

Table 1.	ERGOTHIONFINE CONTEN	T (IN $\mu g/$	g) OF	PARTS	OF	THE .	RABBIT
	CENTRAL N	ERVOUS S	YSTEM	[

0.000		Mean
Cerebellum	4.3, 4.6, 5.0, 5.5	4.9
Cerebral hemispheres	0.9, 1.2, 1.2, 1.3, 1.5	$1 \cdot 2$
Optic nerves	21.0, 36.0, 29.0	28.7
Dorsal columns	<1.0, <1.0	<1.0

A similar distribution has been found in other mammalian species: it corresponds to that found for the cerebellar factor. We have also found that ergothioneine has an action on the electrical activity of the cerebellum similar to that produced by the cerebellar factor. In sensitive preparations, $0.1 \ \mu g$ is sufficient to cause a marked increase in cerebellar activity. In their original experiments, Crossland and Mitchell were able to produce cerebellar excitation by the injection of an extract of 20 mg of rabbit cerebellum and this amount of tissue would have contained approximately $0.1 \mu g$ of ergothioneine (Table 1). Thus, the excitatory action of cerebellar extracts can be completely accounted for by their contained ergothioneine.

The actions of ergothioneine are probably not confined to the cerebellum. Preliminary experiments, in which ergothioneine has been applied to small groups of cells in the parietal cortex, using the technique developed by Mitchell⁵, have indicated that it also excites some cortical cells. Outside the central nervous system it appears to be without detectable action.

J. CROSSLAND G. N. WOODRUFF*

Pharmacological Laboratories, University of Nottingham.

J. F. MITCHELL

Department of Physiology, St. Mary's Hospital Medical School, London, W.2.

* Wellcome Pharmaceutical Research Fellow.

¹ Crossland, J., and Mitchell, J. F., J. Physiol., 132, 391 (1956).
 ² Crossland, J., in Metabolism of the Nervous System, edit. by Richter, 523 (Pergamon, London, 1960). Crossland, J., Garven, J. D., and Mitchell, J. F., J. Physiol., 148, 20P (1959).

Melville, D. B., Vitamins and Hormones, 17, 155 (1959).

⁴ Melville, D. B., and Horner, W. H., J. Biol. Chem., 202, 187 (1953). Melville, D. B., Horner, W. H., and Lubschez, R., J. Biol. Chem., 206, 221 (1954).
 ⁵ Mitchell, J. F., J. Physiol., 171, 23P (1964).

Guanethidine as an Anti-fibrillatory Agent

CATECHOLAMINES have for many years been known to produce cardiac arrhythmias¹. The influence of acetvlcholine or vagal stimulation on arrhythmias, especially of the atria, has overshadowed the influence of the sympathetic mediators². Sharma³ has reported that administration of epinephrine or norepinephrine simultaneously with acetylcholine enhanced the fibrillatory activity of the latter. Thus, it would seem appropriate to examine further the relationship between acetylcholine and catecholamines in their effect on heart rhythm.

The introduction of guanethidine, a drug which acts at adrenergic nerve terminals by preventing release of norepinephrine on nerve stimulation, suggested the possibility of studying the susceptibility to experimental atrial fibrillation in animals with deficient adrenergic mechanisms.

Healthy male dogs weighing about 10 kg were premedicated with morphine sulphate (2 mg/kg subcutaneously). In 30 min, the dogs were anæsthetized with sodium pentobarbital (35 mg/kg intraperitoneally). An endotracheal tube was inserted and the dogs immobilized in

Table	1.	Dose					GUANETHIDINE	AS	AN
			ANTI-FIBRI	LLAI	CORY AG	ENT	Describer		Hom

1389

Experi- ment No.	guane	Dose of ethidine (mg/kg) and route	Pe Time delay before challenge (h)	acetylc at: fibrill (0.5 r intrav	sus holine- rial lation ng/kg enous)
$ 121 \\ 125 $	1·0 1·0	Intravenous	1 1 1 1	0 100	(2) (3)
127	1.0	**	î	100	(2)
141	1.0	**	î	100	(3)
147	1.0	**	ī	100	(3) (2) (3) (3)
73	1.0	Subcutaneous	4	0	(3) (2) (3)
65	2.5	**	4	100	(2)
69	2.5	3.5	4 4 4	100	(3)
77	2.5	2 9	4	50	(4)
95	2.5	,,	18	0	(1) (3) (2) (2) (2)
109	2.5	,,	18	66	(3)
113	2.5	,,	18	0	
129	2.5		18	0	
135	4 ·0	,,	18	0	(2)
39	10.0	,,	24	100	(2) (2) (2) (3) (2) (3) (2) (2) (2) (2) (2)
41	5∙0	,,	24	100	(2)
43	5.0	,,	24	100	
45	5.0	,,	24	100	22
137	4.0	**	24	100 100	
139	4.0	**	24		
79	2.5	* *	24	100 0	22
81	2.5	**	24	ŏ	
97	2.5	,,	24 24	ŏ	253
115	2.5	**	24 24	ŏ	163
117	2.5	3.7	24 24	ŏ	25
131	2.5	**	24	v	(2)

the prone position. They were given guanethidine at various doses and intervals before and during the experiment (Table 1). The method of Leveque was used for the production of atrial fibrillation4. With this procedure during control tests, all the experimental dogs demonstrated susceptibility to acetylcholine-induced atrial fibrillation at doses of 0.3 mg/kg or less. A total of 26 experiments were performed on 14 dogs.

The usual protective dose of guanethidine within 20 min appeared to be about 1.0 mg/kg although 0.5 was sometimes adequate. These low doses were protective for at least 1-2 h, but the effect did not usually last as long as 4 h. With increasing doses of guanethidine (up to 10.0 mg/kg), the anti-arrhythmic effect of this drug was prolonged up to 24 h.

Anti-fibrillatory drugs are in general related in structure to local anæsthetics and antihistaminic agents. The chemical structure of guanethidine shows similarities to this general structure, and Green has reported that guanethidine possesses a highly persistent local anæsthetic action⁵.

Using the method described here for testing the antifibrillatory action of guanethidine, other drugs such as procaine, diphenhydramine, chlorpheniramine, tripellenamine and quinidine have been found previously to be protective4.

It is interesting to note that the anti-arrhythmic action of guanethidine is apparent with doses that are smaller than those generally used for adrenergic blockade⁶. This might suggest that the anti-arrhythmic effect of this drug does not depend on changes in catecholamine stores. Investigations to elucidate the mechanism of action of guanethidine in preventing cardiac arrhythmias are now in progress.

This work was supported by a research grant from the Central Ohio Heart Association.

PHILLIP E. LEVEQUE

Department of Pharmacology, Ohio State University, College of Medicine, Columbus, Ohio.

- ¹ Kure, K., Z. Exp. Path. Therap., 12, 389 (1913).
 ² Nahum, L. H., and Hoff, H. E., J. Amer. Med. Assoc., 105, 254 (1935).
 ³ Sharma, P. L., Brit. Heart J., 26, 134 (1964).
 ⁴ Leveque, P. E., Arch. Intern. Pharmacodyn., 149, 297 (1964).
- ⁶ Green, A. F., Ciba Found. Symp., Adrenergic Mechanisms (Churchill, Ltd., London, 1960).
- ⁶ Maxwell, R. A., et al., J. Pharmacol. Exp. Ther., 128, 22 (1960).

©1964	Nature	Publishing	Group