Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of the anterior prefrontal cortex in human cognition


Complex problem-solving and planning involve the most anterior part of the frontal lobes including the fronto-polar prefrontal cortex (FPPC)1,2,3,4,5,6, which is especially well developed in humans compared with other primates7,8. The specific role of this region in human cognition, however, is poorly understood. Here we show, using functional magnetic resonance imaging, that bilateral regions in the FPPC alone are selectively activated when subjects have to keep in mind a main goal while performing concurrent (sub)goals. Neither keeping in mind a goal over time (working memory) nor successively allocating attentional resources between alternative goals (dual-task performance) could by themselves activate these regions. Our results indicate that the FPPC selectively mediates the human ability to hold in mind goals while exploring and processing secondary goals, a process generally required in planning and reasoning.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Behavioural tasks.
Figure 2: Behavioural performance.
Figure 3: Topography of brain regions with distinct activation profiles.
Figure 4: Branching-specific activations (Z -maps thresholded at Z > 4.5, P < 0.05, corrected) superimposed on anatomical axial slices averaged across subjects (Talairach coordinates Z = 9 and 21 mm).
Figure 5: Dynamics of activation profiles.


  1. Grafman, J. in Structure and Function of the Human Prefrontal Cortex (eds Grafman, J., Holyoak, K. J. & Boller, F.) 337–368 (Annals of the New York Academy of Sciences, New York, (1995).

    Google Scholar 

  2. Baker, S. C. et al. Neural system engaged by planning: A PET study of the Tower of London task. Neuropsychologia 34, 515–526 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Owen, A. M., Doyon, J., Petrides, M. & Evans, A. C. Planning and spatial working memory: a positron emission tomography study in human. Eur. J. Neurosci. 8, 353–564 (1996).

    Article  CAS  Google Scholar 

  4. Sirigu, A. et al. Planning and script analysis following prefrontal lobe lesions. Ann. NY Acad. Sci. 769, 277–288 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Spector, L. & Grafman, J. in Handbook of Neuropsychology (eds Boller, F. & Grafman, J.) 377–392 (Elsevier, Amsterdam, (1994).

    Google Scholar 

  6. Wharton, C. & Grafman, J. Reasoning and the human brain. Trends Cogn. Sci. 2, 54–59 (1998).

    Article  CAS  Google Scholar 

  7. Stuss, D. T. & Benson, D. F. The Frontal Lobes (Raven, New York, (1986).

    Google Scholar 

  8. Fuster, J. M. The Prefrontal Cortex. Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, New York, (1989).

    Google Scholar 

  9. D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc. Natl Acad. Sci. USA 95, 831–838 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Squire, L. R. et al. Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proc. Natl Acad. Sci. USA 89, 1837–1841 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Buckner, R. L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    Article  CAS  Google Scholar 

  13. Shallice, T. et al. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368, 633–635 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Grady, C. L. et al. Age-related reductions in human recognition memory due to impaired encoding. Science 269, 218–221 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Tulving, E. et al. Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc. Natl Acad. Sci. USA 91, 2012–2015 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Tulving, E. Elements of Episodic Memory (Oxford Science, Oxford, (1983).

    Google Scholar 

  17. Galaburda, A. M., LeMay, M., Kemper, T. L. & Geschwind, N. Right-left asymmetrics in the brain. Science 199, 852–856 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Furey, M. L. et al. Cholinergic stimulation alters performance and task-specific regional cerebral blood flow during working memory. Proc. Natl Acad. Sci. USA 94, 6512–6516 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Goldman-Rakic, P. C. in Handbook of Physiology, The Nervous System (eds Plum, F. & Mountcastle, V.) 373–417 (American Physiological Society, Bethesda, MD, (1987).

    Google Scholar 

  20. Petrides, M. in Handbook of Neuropsychology (eds Boller, F. & Grafman, J.) 59–82 (Elsevier, Amsterdam, (1994).

    Google Scholar 

  21. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997).

    Article  ADS  CAS  Google Scholar 

  23. MacLeod, A. K., Buckner, R. L., Miezin, F. M., Petersen, S. E. & Raichle, M.. E. Right anterior prefrontal cortex activation during semantic monitoring and working memory. NeuroImage 7, 41–48 (1998).

    Article  CAS  Google Scholar 

  24. Grafton, S. T., Hazeltine, E. & Ivry, R. Functional mapping of sequence learning in normal humans. J. Cogn. Neurosci. 7, 497–510 (1995).

    Article  CAS  Google Scholar 

  25. Pallier, C., Dupoux, E. & Jeannin, X. EXPE: an expandable programing language for on-line psychological experiments. Behav. Res. Methods Instrum. Comput. 29, 322–327 (1997).

    Article  Google Scholar 

  26. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. Comparing functional (PET) images: The assessment of significant change. J. Cereb. Blood Flow Metab. 11, 690–699 (1991).

    Article  CAS  Google Scholar 

  27. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, (1988).

    Google Scholar 

  28. Duvernoy, H. The Human Brain. Surface, Three Dimensional Sectional Anatomy and MRI. (Springer, Wien, (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jordan Grafman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koechlin, E., Basso, G., Pietrini, P. et al. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing