Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The existence of supercooled liquid water at 150?K

Abstract

Supercooled water may offer clues to the anomalous properties of its normal liquid state1. The supercooled state also shows anomalous thermodynamic and transport properties at low temperatures2,3,4. Although there are several theoretical explanations for this behaviour, no consensus has emerged1,2,5,6,7,8,9,10,11,12. Some theories preclude the existence of the supercooled liquid below an apparent thermodynamic singularity at 228?K (refs 2, 7, 9); others are consistent with a continuous region of metastability from the melting point at 273?K to the glass transition temperature at 136?K (refs 6, 8, 13). But the data needed to distinguish between these possibilities have not yet been forthcoming. Here we determine the diffusivity of amorphous ice by studying isotope intermixing in films less than 500 nanometres thick. The magnitude and temperature dependence of the diffusivity is consistent with the idea that the amorphous solid water melts into a deeply metastable extension of normal liquid water before crystallizing at 160?K. This argues against the idea of a singularity in the supercooled regime at ambient pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of TPD experiment and model simulation.
Figure 2: Diffusivity versus temperature from the model simulation of the TPD experimental data.
Figure 3: Temperature dependence of diffusivity.

Similar content being viewed by others

References

  1. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 328–335 (1998).

    Article  ADS  Google Scholar 

  2. Speedy, R. J. & Angell, C. A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45?°C. J. Chem. Phys. 65, 851–858 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Angell, C. A. in Water: A Comprehensive Treatise Vol. 7 (ed. Franks, F.) 1–81 (Plenum, New York, (1982).

    Google Scholar 

  4. Angell, C. A. Supercooled water. Annu. Rev. Phys. Chem. 34, 593–630 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Debenedetti, P. G. Metastable Liquids: Concepts and Principles(Princeton Univ. Press, (1996).

    Google Scholar 

  6. Stanley, H. E. & Teixeira, J. Interpretation of the unusual behavior of H2O and D2O at low temperatures: a test of a percolation model. J. Chem. Phys. 73, 3404–3422 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Speedy, R. J. Stability limit conjecture. An interpretation of the properties of water. J. Chem. Phys. 86, 982–991 (1982).

    Article  CAS  Google Scholar 

  8. Poole, P. H., Sciotino, F., Essman, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Poole, P. H., Sciotino, F., Grande, T., Stanley, H. E. & Angell, C. A. Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys. Rev. Lett. 73, 1632–1635 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Borick, S. S., Debenedetti, P. G. & Sastry, S. Alattice model of network forming fluids with orientation-dependent bonding: equilibrium, stability, and implications for the phase behavior of supercooled water. J. Phys. Chem. 99, 3781–3792 (1995).

    Article  CAS  Google Scholar 

  11. Tanaka, H. Aself-consistent phase diagram for supercooled water. Nature 380, 328–330 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Mishima, O. & Stanley, H. E. Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature 392, 164–168 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Xie, Y., Ludwig, K. F. J, Morales, G., Hare, D. E. & Sorensen, C. M. Noncritical behavior of density fluctuations in supercooled water. Phys. Rev. Lett. 71, 2050–2053 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Sceats, M. G. & Rice, S. A. in Water: A Comprehensive Treatise Vol. 7(ed. Franks, F.) 83–214 (Plenum, New York, (1982).

    Google Scholar 

  15. Fisher, M. & Devlin, J. Defect activity in amorphous ice from isotopic exchange data: Insight into the glass transition. J. Phys. Chem. 99, 11584–11590 (1995).

    Article  CAS  Google Scholar 

  16. Speedy, R. J. Evidence for a new phase of water: water II. J. Phys. Chem. 96, 2322–2325 (1992).

    Article  CAS  Google Scholar 

  17. Speedy, R. J., Debenedetti, P. G., Smith, R. S., Huang, C. & Kay, B. D. The evaporation rate, free energy, and entropy of amorphous water at 150K. J. Chem. Phys. 105, 240–244 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Smith, R. S., Huang, C. & Kay, B. D. Evidence for molecular translational diffusion during the crystallization of amorphous solid water. J. Phys. Chem. B 101, 6123–6126 (1997).

    Article  CAS  Google Scholar 

  19. Brown, D. E.et al. H2O condensation coefficient and refractive index for vapor-deposited ice from molecular beam and optical interference measurements. J. Phys. Chem. 100, 4988–4995 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Smith, R. S., Huang, C., Wong, E. K. L. & Kay, B. D. Desorption and crystallization kinetics in nanoscale thin films of amorphous water ice. Surf. Sci. Lett. 367, L13–L17 (1996).

    Article  CAS  Google Scholar 

  21. Smith, R. S., Huang, C., Wong, E. K. L. & Kay, B. D. The molecular volcano: abrupt CCl4desorption driven by the crystallization of amorphous solid water. Phys. Rev. Lett. 79, 909–912 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Onsager, L. & Runnels, L. K. Diffusion and relaxation phenomena in ice. J. Chem. Phys. 50, 1089–1103 (1969).

    Article  ADS  CAS  Google Scholar 

  23. Goto, K., Hondoh, T. & Higashi, A. Determination of diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by X-ray topography. Jpn J. Appl. Phys. 25, 351–357 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Weingärtner, H. Self diffusion in liquid water. A reassessment. Z. Phys. Chem. 132, 129–149 (1982).

    Article  Google Scholar 

  25. Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. The pressure dependence of self diffusion in supercooled light and heavy water. Ber. Bunsenges. Phys. Chem. 92, 1111–1117 (1988).

    Article  CAS  Google Scholar 

  26. Gillen, K. T., Douglass, D. C. & Hoch, M. J. R. Self-diffusion in liquid water to −31?°C. J. Chem. Phys. 57, 5117–5119 (1972).

    Article  ADS  CAS  Google Scholar 

  27. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1934 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. Diffusion in supercooled water to 300?MPa. Phys. Rev. Lett. 59, 1128–1131 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Angell, C. A. Approaching the limits. Nature 331, 206–207 (1988).

    Article  ADS  Google Scholar 

  30. Handa, Y. P. & Klug, D. D. Heat capacity and glass transition behavior of amorphous ice. J. Phys. Chem. 92, 3323–3325 (1988).

    Article  CAS  Google Scholar 

  31. Johari, G. P., Hallbrucker, A. & Mayer, E. The glass-liquid transition of hyperquenched water. Nature 330, 552–553 (1987).

    Article  ADS  CAS  Google Scholar 

  32. Johari, G. P. Liquid state of low-density pressure-amorphized ice above its Tg. J. Phys. Chem. B 102, 4711–4714 (1998).

    Article  CAS  Google Scholar 

  33. Johari, G. P. Water's character from dielectric relaxation above its Tg. J. Chem. Phys. 105, 7079–7082 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Bartell, L. S. & Huang, J. Supercooling of water below the anomalous range near 226?K. J. Phys. Chem. 98, 7455–7457 (1994).

    Article  CAS  Google Scholar 

  35. Faubel, M., Schlemmer, S. & Toennies, J. P. Amolecular beam study of the evaporation of water from a liquid jet. Z. Phys. D 10, 269–277 (1988).

    Article  ADS  CAS  Google Scholar 

  36. Gallo, P., Sciortino, F., Tartaglia, P. & Chen, S.-H. Slow dynamics of water moelcules in supercooled states. Phys. Rev. Lett. 76, 2730–2733 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Stevenson, K. P., Kimmel, G. A., Dohnálek, Z., Smith, R. S. & Kay, B. D. Controlling the morphology of amorphous solid water. Science 283, 1505–1507 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. A. Angell, H. E. Stanley, R. J. Speedy, P. Debenedetti, E. Mayer, S. Sastry, P. Poole, F. Sciortino, F. Starr, H. D. Lüdemann and A. Geiger for discussions. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R., Kay, B. The existence of supercooled liquid water at 150?K. Nature 398, 788–791 (1999). https://doi.org/10.1038/19725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19725

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing