

Fig. Dependence of the monthly median oritical frequency
of the E-layer at noon on the zenith angle x December 1957 . of pper line, nothern hemisphere; lower line, southern hemisphere
longitude rango. One finds two straight lines instead of only one as would be expected. It is always the winter homisphere which gives tho higher values, and hence the lines are inverted on changing from December to July. The 'scissors' effect disappears at the equinoxes.

It follows that a few stations, such as Lwiro, Chiclayo and Chimbote, aro in a much bettor position for E-layer observations because the perturbing effects that cause seasonal variations, ete., seem to be unimportant at those places.

Fermmeldetechnisches Zentralamt dor Doutschon Bundespost,
Ionosphären-Institut, Broisach/Rheim.
${ }^{1}$ Shimazaki, T., J. Rad. Res. Lab., 7, 95 (1960).
${ }^{2}$ Minnis, C. M., and Bazzard, G. H., J. Atmos. Terr. Phys., 18, 306 (1960).
${ }^{3}$ Eyfrig, R., Geofisica Pura e Applicanta, 45, 179 (1960).
${ }^{4}$ Beynon, W. J. G., and Brown, G, M., J. Atmos. Terr, Phys., 14, 138 (1959).
${ }^{5}$ Minnis, C. M., and Bazzard, G. H., Nature, 181, 1796 (1958).

RADIOPHYSICS

Faraday Rotation Effects associated with the Radio Source Centaurus A

The remarkablo observations of Cooper and Price ${ }^{1}$ indicate that the radiation from the radio source Centaurus A is linearly polarized and is subject to Faraday rotation of an amount such that:

$$
\begin{equation*}
\int n H \cos \alpha \mathrm{~d} r \sim 2.5 \times 10^{14} \text { gauss } \mathrm{cm}^{-2} \tag{1}
\end{equation*}
$$

where n is the number of free electrons per cm^{3}, H is the magnetic field in gauss and α is the angle between the magnetic field and the line of sight. Cooper and Prico assert that "the majority of the rotation must be occurring either within our own Galaxy or in the outer regions of Centaurus $A^{\prime \prime}$. Nevertheless they find that both of these possibilities are quantitatively somewhat implausible.
For the Galaxy, Cooper and Price take valuos representative of the halo. I differ from them by assuming $n \sim 10^{-8} \mathrm{~cm}^{-3}, H \sim 10^{-6}$ gauss (their value of 10^{-5} gauss seems much too large ${ }^{2}$), and fcos $\alpha \mathrm{d} r \sim$ onefifth of the dimonsions of the region (a somewhat arbitrary choice which I make for all the regions mentioned in this communication). Taking the dimensions of the halo as 10 kiloparsecs we have:

$$
\int n H \cos \alpha \mathrm{~d} r \sim 6 \times 10^{12} \text { gauss } \mathrm{cm}^{-2}
$$

which is rather less than expression (1).

As rogards the possibility that the rotation occurs in the outer envelope of Centaurus A, Cooper and Price point out that it is remarkable that the offect varies so little from one line of sight to another. This point is somewhat strengthened by the following consideration. If we assume that the dependence of the porcentage polarization on frequency is due to Faraday rotation in the emitting regions themselves, one can calculate: (1) the amount of this rotation (which turns out to bo about one-tenth of the total rotation observed); (2) the percentage polarization in the absence of this rotation (which is a measure of the uniformity of the magnetic field in tho emitting regions). The calculation shows that both these quantities vary from one lino of sight to another by moro than a factor 2 , in contrast to the 15 per cent or so for the total Faraday rotation.
The difficulty is less sovoro in an alternative explanation which I wish to propose, namely, that most of the rotation takes place in the local cluster of galaxies (or possibly in the cluster containing Centaurus A). According to a model recently developed by me^{3}, the local cluster contains a magnetic field of about 5×10^{-7} gauss. In this model $n \sim 1 / 3 \times 10^{-3}$ cm^{-8}, and the dimensions of the region are about one megaparsec ${ }^{4}$. This increaso in dimensions as compared with the galactic halo more than compensates for the decrease in n and H. In fact for the local cluster:

$$
\int n H \cos \alpha \mathrm{~d} r \sim 10^{14} \text { gauss } \mathrm{cm}^{-2}
$$

In viow of the uncortainties in the parameters of the cluster, this agrees roasonably woll with expression (1). The small variation in the rotation from one line of sight to another is now more understandable, since the regions involvod lie closer together in space, and their separation is a smaller fraction of the dimensions of the magnetically active medium.

Ono should also examine the possibility that the Faraday rotation occurs mainly in the intergalactic space between the source and tho local cluster. Most cosmologists believer that the averago particle donsity in the universe as a whole is about $10^{-5} \mathrm{~cm}^{-3}$, and it is probable ${ }^{6-8}$ that most of this is in the form of ionized hydrogen. Accordingly, $n \sim 10^{-5} \mathrm{~cm}^{-3}$. Taking $H \sim 10^{-7}$ gauss ${ }^{9}$ and the distance of Centaurus A as 4 megaparsecs ${ }^{1}$, we havo:

$$
\int n H\left\lceil\cos \alpha \mathrm{~d} r \sim 2 \times 10^{12} \text { gauss } \mathrm{cm}^{-2}\right.
$$

which is again too small.
I conclude that the observations of Cooper and Price may be explained in terms of a magnetic field in the local cluster of galaxios. If other polarized sources can be detected, it might be possible to chock this conclusion by studying the dependence of the amount of Faraday rotation on the direction of the source.

D. W. Sciama

Department of Applied Mathematics and Theoretical Physics, University of Cambridge.
${ }^{1}$ Cooper, B. F. C., and Price, R. M., Nalure, 195, 1084 (1962).
${ }^{3}$ Davies, R. D., Slater, C. H., Shuter, W. L. H., and Wild, Y. A. T., Nature, 18\%, 1088^{\prime} (1960).
${ }^{3}$ Sciama, D. W., Mon. Not. Roy. Astro. Soc., 123, 317 (1.062).
${ }^{6}$ Kahn, F. D., and Woltjer, L., Astrophys. J., 180, 705 (1459).
${ }^{5}$ Bondi, H., Cosmology, second ed. (Camb. Univ. Press, 1960).
${ }^{\text {a }}$ McCrea, W. H., Enileavour, 17, 5 (1958).
${ }^{7}$ Sciama, D. W., Vistas in Astronomy, edit. by Beer, A., 3, 321 (Pergamon Press, 1960).
${ }^{8}$ Field, G. B., Astrophys. J., 185, 684 (1962).
-Gold, T., and Hoyle, F., Paris Symp. Ratio Astronomy, edit. by Bracewell, R. N., 588 (Stanford Univ. Press, 1959).

