Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Growth of nanotubes for probe microscopy tips


Carbon nanotubes, which have intrinsically small diameters and high aspect ratios and which buckle reversibly, make potentially ideal structures for use as tips in scanning probe microscopies, such as atomic force microscopy (AFM)1,2,3,4. However, the present method of mechanically attaching nanotube bundles for tip fabrication is time consuming and selects against the smallest nanotubes, limiting the quality of tips. We have developed a technique for growing individual carbon nanotube probe tips directly, with control over the orientation, by chemical vapour deposition (CVD) from the ends of silicon tips. Tips grown in this way may become widely used in high-resolution probe microscopy imaging.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CVD nanotube tips.
Figure 2: Imaging IgM macromolecules with a CVD nanotube tip at high resolution.


  1. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T. & Smalley, R. E. Nature 384, 147–150 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Wong, S. S., Harper, J. D., Lansbury, P. T. & Lieber, C. M. J. Am. Chem. Soc. 120, 603–604 (1998).

    Google Scholar 

  3. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Nature 394, 52–55 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Wong, S. S. et al. Appl. Phys. Lett. 73, 3465–3467 (1998).

    Google Scholar 

  5. Lehmann, V. Thin Solid Films 255, 1–4 (1995).

    Google Scholar 

  6. Ronkel, F., Schultze, J. W. & Arens-Fischeer, R. Thin Solid Films 276, 40–43 (1996).

    Google Scholar 

  7. Li, W. Z. et al. Science 274, 1701–1703 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Vesenka, J., Manne, S., Giberson, R., Marsh, T. & Henderson, E. Biophys. J. 65, 992–997 (1993).

    Google Scholar 

  9. Perkins, S. J., Nealis, A. S., Sutton, B. J. & Feinstein, A. J. Mol. Biol. 221, 1345–1366 (1991).

    Google Scholar 

  10. Shao, Z., Mou, J., Czajkowsky, D. M., Yang, J. & Yuan, J.-Y. Adv. Phys. 45, 1–86 (1996).

    Google Scholar 

  11. Muller, D., Amrein, M. & Engel, A. J. Struct. Biol. 119, 172–188 (1997).

    Google Scholar 

  12. Fritz, J., Anselmetti, D., Jarchow, J. & Fernandez-Buusquets, X. J. Struct. Biol. 119, 165–171 (1997).

    Google Scholar 

  13. Zhang, Y., Sheng, S. & Shao, Z. Biophys. J. 71, 2168–2176 (1996).

    Google Scholar 

  14. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Nature 395, 878–881 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Hafner, J. H. et al. Chem. Phys. Lett. 296, 195–202 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hafner, J., Cheung, C. & Lieber, C. Growth of nanotubes for probe microscopy tips. Nature 398, 761–762 (1999).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing