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MATHEMATICS

Equation of Motion in Five Space

Taere exist many models for the description of
the gravitational and electromagnetic field. Perhaps
the most successful formalisin developed is still that of
Kaluza', with notable improvements by Bergmann?
since it reproduces exactly the classic equations of the
electromagnetic field with gravity, However, there
gtill remained the well-known diffienlties associated
with the classic treatment of Nature so that general-
izations which lead to substantially different equa-
tions were made in the hope that there could be
included, within the new frameworks an adequate
theory encompassing quantum-phenomena as well.
These hopes have not been realized; but nevertheless
it is most difficult to relinquish a theory which by
and large has been subject to confirmation—quite
strikingly in recent times using technigues based on
the Mosshauer effect?, In addition to numerous
verifications of the original version of the theory,
Einstein, Infeld and Hoffmann® have shown that there
exists a most msthetic feature, namely, that the field
equations themsslves determine the classic equations
of motion of ‘smgularities’ or ‘particles’ in the field.
Thus it is not necessary to supplement the fleld
equations with ponderomotive equations.

It seems to be of some interest to investigate the
equations of motion in a five-dimensional setting to
examine departures from the usual results. I will
assume that the additional dimension is speace-like
and take for the field equations:
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where ¢, is the metric tensor, Ry, the Riemann-
Chrigtoffel curvature tensor and R its contrac-
tion. ‘0’ indices will be considered temporal,
the others spatial with the ‘4’ index reserved for the
additional dimension. Now if we seek approximate
solutions of the field equations corresponding as
closely as possible to the four-dimensional case it is
found, on reckoning differentiation with respect to
X, a8 leading to quantities of the same order of
smallness as  differentistion with respect to
Xo(= ct), and then proceeding in much the same
fashion as in reference 2 and 4 ‘co-ordinates’ of the
‘particles’ will involve X, as well as X, which
would imply that the equations of motion for the
position of the ‘particles’ will be partial differential
equations rather than total differential equations. In
addition to a field, which, in view of the Kaluza
theory, may be interpreted as that arising from a
charged ‘particle,” there arises another which I
make no attempt to interpret here.

For purposes of comparison let us record the results
of the caleulations for the metric tensors to that order
essential to obtain the Newtonian approximation
These are:
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where
Py = ((X5) (X-g) ®)

g%, the sth co-ordinate of the jth ‘particle,’ and M;
and @; its mass {(gm.) and charge (1.5.7.) respectively.
P; may be considered another parameter describing
another property of the jth particle. It is to be noted
that » is Newton's constant of gravity and that the
dimensions of the Pj ig that of (x)~1/* times charge
(8.8.0.). M3, @sand Pjcould be functions of Xo(= ct}
and X, satisfying:
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while the partial differential equations of motion for
the jth particle in the Newtonian approximation turn
out to be:
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with the time £ in seconds units and X* the additional
co-ordinates expressed in cm. units.

It is to be noted that oven for an isolated ‘particle’
or systems of ‘particles’ far vemoved from one
another the co-ordinates £] satisfy the second-order
equation obtained by considering only the first three
terms of equation 5 which may be expressed as:
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if M;, @, and Pj are presumed constant. In equation
7 ej+ is given by :
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which implies with the f; and’gj arbitrary functions
of the indicated arguments that:
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a wave motion for the £} which is propagated with
velocities — cj+ in our ¢ — X space.

The insistence that equation 7 be a hyperbolic
partial differential equation has as consequence
P3/My < 0to assure this property oven when ¢y = 0.
For an electron the velocity of propagation attains a
value of the order 102! times the velocity of light.
One would be forced to conclude that if it were
possible to communicate in such a space it would be a
relatively simple task to assess the state of the far
reaches of the universe within a considerably shorter
interval of time than heretofore and so indeed to
consider oceurrences almost anywhere to be of a
contemporary nature. In any event the structure of
the equations of motion which have emerged even for
‘free particles’ may perhaps provide us with other
conceptual possibilities the starting point of which
may lead to a theory with less startling consequences.
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