Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters

Abstract

As a form of matter intermediate between molecules and bulk solids, atomic clusters have been much studied1. Light-induced processes in clusters can lead to photo-fragmentation2,3 and Coulombic fission4, producing atom and ion fragments with a few electronvolts (eV) of energy. However, recent studies of thephotoionization of atomic clusters with high intensity (>1016 W cm−2) femtosecond laser pulses have shown that these interactions can be far more energetic5,6,7,8,9,10,11,12,13—excitation of large atomic clusters can produce a superheated microplasma that ejects ions with kinetic energies up to 1 MeV (ref. 10). This phenomenon suggests that through irradiation of deuterium clusters, it would be possible to create plasmas with sufficient average ion energy for substantial nuclear fusion. Here we report the observation of nuclear fusion from the explosions of deuterium clusters heated with a compact, high-repetition-rate table-top laser. We achieve an efficiency of about 105 fusion neutrons per joule of incident laser energy, which approaches the efficiency of large-scale laser-driven fusion experiments. Our results should facilitate a range of fusion experiments using small-scale lasers, and may ultimately lead to the development of a table-top neutron source, which could potentially find wide application in materials studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Measured laser absorption and plasma density profile.
Figure 3: The time-of-flight spectrum of particles detected on the neutron detectors for three plasma-detector separations (1, 2.5 and 3.2 m).

Similar content being viewed by others

References

  1. Castleman, A. W. & Keesee, R. G. Gas-phase clusters: spanning the states of matter. Science 241, 36–42 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Desai, S., Feigerle, C. S. & Miller, J. C. Multiphoton ionization and photodissociation of (NO)mArnclusters. Z. Phys. D 26, 220–222 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Ernstberger, B., Krause, H., Kiermeier, A. & Neusser, H. J. Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight spectrometer. J. Chem. Phys. 92, 5285–5296 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Gotts, N. G., Lethbridge, P. G. & Stace, A. J. Observation of Coulomb explosion in doubly charged atomic and molecular clusters. J. Chem. Phys. 96, 408–421 (1992).

    Article  ADS  CAS  Google Scholar 

  5. McPherson, A., Thompson, B. D., Borisov, A. B., Boyer, K. & Rhodes, C. K. Multiphoton-induced X-ray emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature 370, 631–634 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Purnell, J., Snyder, E. M., Wei, S. & Castlemand, A. W. Ultrafast laser-induced Coulomb explosion of clusters with high charge states. Chem. Phys. Lett. 229, 333–339 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Ditmire, T., Donnelly, T., Falcone, R. W. & Perry, M. D. Strong X-ray emission from high-temperature plasmas produced by intense irradiation of clusters. Phys. Rev. Lett. 75, 3122–3125 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Shao, Y. L. et al. Multi-keV electron generation in the interaction of intense laser pulses with Xe clusters. Phys. Rev. Lett. 77, 3343–3346 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Snyder, E. M., Buzza, S. A. & Castleman, A. W. Intense field-matter interactions: multiple ionization of clusters. Phys. Rev. Lett. 77, 3347–3350 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Ditmire, T. et al. High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54–56 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Lezius, M., Dobosz, S., Normand, D. & Schmidt, M. Hot nanoplasmas from intense laser irradiation of argon clusters. J. Phys. B: At. Mol. Opt. Phys. 30, L251–L258 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Rose-Petruck, C., Schafer, K. J., Wilson, K. R. & Barty, C. P. J. Ultrafast electron dynamics and inner-shell ionization in laser driven clusters. Phys. Rev. A 55, 1182–1190 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Lezius, M., Dobosz, S., Normand, D. & Schmidt, M. Explosion dynamics of rare gas clusters in strong laser fields. Phys. Rev. Lett. 80, 261–264 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Dittrich, T. R. et al. Diagnosis of pusher-fuel mix in indirectly driven nova implosions. Phys. Rev. Lett. 73, 2324–2327 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Daido, H. et al. Neutron-production from a shell-confined carbon–deuterium plasma by 1.06-µm laser irradiation. Appl. Phys. Lett. 51, 2195–2196 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Obst, A. W., Chrien, R. E. & Wilke, M. D. Colliding plasma neutron production at Trident. Rev. Sci. Instrum. 68, 618–620 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Key, M. H. et al. Hot electron production and heating by hot electrons in fast ignitor research. Phys. Plas. 5, 1966–1972 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Pretzler, G. et al. Neutron production by 200 mJ ultrashort laser pulses. Phys. Rev. E. 58, 1165–1168 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Ditmire, T., Donnelly6, T., Rubenchik, A. M., Falcone, R. W. & Perry, M. D. The interaction of intense laser pulses with atomic clusters. Phys. Rev. A 53, 3379–3402 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Ditmire, T. et al. High energy explosion of super-heated clusters: Transition from molecular to plasma behavior. Phys. Rev. Lett. 78, 2732–2735 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Comm. 56, 219–221 (1985).

    Article  ADS  Google Scholar 

  22. Smith, R. A., Ditmire, T. & Tisch, J. W. G. Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments. Rev. Sci. Instrum. 69, 3798–3804 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Klingelhöfer, R. & Moser, H. O. Production of large hydrogen clusters in condensed molecular beams. J. Appl. Phys. 43, 4575–4579 (1972).

    Article  ADS  Google Scholar 

  24. Ditmire, T., Smith, R. A., Tisch, J. W. G. & Hutchinson, M. H. R. Absorption of high intensity laser pulses in gases of clusters. Phys. Rev. Lett. 78, 3121–3124 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Shigemori, K. et al. Measurement of strong blast waves in gas cluster targets. Ap. J. Lett. (submitted).

  26. Teller, E. Fusion(Academic, New York, (1981).

    Google Scholar 

  27. Zweiback, J., Ditmire, T. & Perry, M. D. Femtosecond time resolved studies of the dynamics of noble gas cluster explosions. Phys. Rev. Lett. A (in the press).

  28. Loveman, R., Bendahan, J., Gozani, T. & Stevenson, J. Time-of-flight fast-neutron radiography. Nucl. Instrum. Meth. Phys. Res. B: Beam Interact. Mater. Atoms 99, 765–768 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Smith, J. Tisch and other collaborators from Imperial College for many useful conversations; M. Perry and H. Powell for useful input; and V. Tsai for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ditmire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditmire, T., Zweiback, J., Yanovsky, V. et al. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489–492 (1999). https://doi.org/10.1038/19037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19037

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing