Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A simple explanation of light emission in sonoluminescence


Ultrasonically driven gas bubbles in liquids can emit intense bursts of light when they collapse1. The physical mechanism for single-bubble sonoluminescence has been much debated2,3. The conditions required for, and generated by, bubble collapse can be deduced within the framework of a hydrodynamic (Rayleigh–Plesset4) analysis of bubble dynamics and stability5,6, and by considering the dissociation and outward diffusion of gases under the extreme conditions induced by collapse7,8. We show here that by extending this hydrodynamic/chemical picture in a simple way, the light emission can be explained too. The additional elements that we add are a model for the volume dependence of the bubble's temperature9,10 and allowance for the small emissivity of a weakly ionized gas11. Despite its simplicity, our approach can account quantitatively for the observed parameter dependences of the light intensity and pulse width, as well as for the spectral shape and wavelength independence of the pulses12,13,14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral variation of intensity and pulse width of sonoluminescence pulses from xenon and argon bubbles.
Figure 2: Size and light emission of diffusively stable argon bubbles.
Figure 3: Calculated and measured sonoluminescence pulse widths as a function of light intensity.

Similar content being viewed by others


  1. Gaitan, D. F. An Experimental Investigation of Acoustic Cavitation in Gaseous Liquids. Thesis , Univ. Mississippi(1990).

    Google Scholar 

  2. Crum, L. A. Sonoluminescence. Phys. Today 47, 22– 29 (1994).

    Article  CAS  Google Scholar 

  3. Barber, B. P., Hiller, R. A., Löfstedt, R., Putterman, S. J. & Weninger, K. R. Defining the unknowns of sonoluminescence. Phys. Rep. 281, 65–143 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Brennen, C. E. Cavitation and Bubble Dynamics (Oxford Univ. Press, ( 1995).

    MATH  Google Scholar 

  5. Brenner, M. P., Lohse, D. & Dupont, T. Bubble shape oscillations and the onset of sonoluminescence. Phys. Rev. Lett. 75, 954– 957 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Hilgenfeldt, S., Lohse, D. & Brenner, M. P. Phase diagrams for sonoluminescing bubbles. Phys. Fluids 8, 2808–2825 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Lohse, D., Brenner, M. P., Dupont, T., Hilgenfeldt, S. & Johnston, B. Sonoluminescing air bubbles rectify argon. Phys. Rev. Lett. 78, 1359– 1362 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Lohse, D. & Hilgenfeldt, S. Inert gas accumulation in sonoluminescing bubbles. J. Chem. Phys. 107, 6986– 6997 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Prosperetti, A. Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Am 61, 17–27 (1977).

    Article  ADS  Google Scholar 

  10. Prosperetti, A. The thermal behaviour of oscillating gas bubbles. J. Fluid Mech. 222, 587–616 ( 1991).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Moss, W., Clarke, D. & Young, D. Calculated pulse widths and spectra of a single sonoluminescing bubble. Science 276, 1398– 1401 (1997).

    Article  CAS  Google Scholar 

  12. Gompf, B., Günther, R., Nick, G., Pecha, R. & Eisenmenger, W. Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys. Rev. Lett. 79, 1405–1408 ( 1997).

    Article  ADS  CAS  Google Scholar 

  13. Pecha, R., Gompf, B., Nick, G., Wang, Z. Q. & Eisenmenger, W. Resolving the sonoluminescence pulse shape with a streak camera. Phys. Rev. Lett. 81, 717– 720 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Moran, M. J. & Sweider, D. Measurements of sonoluminescence temporal pulse shape. Phys. Rev. Lett. 80, 4987–4990 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Hiller, R. A., Putterman, S. J. & Weninger, K. R. Time-resolved spectra of sonoluminescence. Phys. Rev. Lett. 80, 1090–1093 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Vuong, V. Q. & Szeri, A. J. Sonoluminescence and diffusive transport. Phys. Fluids 8, 2354–2364 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Yuan, L., Cheng, H. Y., Chu, M. C. & Leung, P. T. Physical parameters affecting sonoluminescence: A self-consistent hydrodynamic study. Phys. Rev. E 77, 4265–4280 (1998).

    Article  ADS  Google Scholar 

  18. Flint, E. B. & Suslick, K. S. The temperature of cavitation. Nature 253, 1397–1399 (1991).

    CAS  Google Scholar 

  19. Matula, T. J. & Crum, L. A. Evidence for gas exchange in single-bubble sonoluminescence. Phys. Rev. Lett. 80, 865 –868 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Ketterling, J. A. & Apfel, R. E. Experimental validation of the dissociation hypothesis for single bubble sonoluminescence. Phys. Rev. Lett. 81, 4991–4994 ( 1998).

    Article  ADS  CAS  Google Scholar 

  21. Zel'dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena Vols I & II(Academic, New York, (1966).

    Google Scholar 

  22. Fyrillas, M. M. & Szeri, A. J. Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277, 381–407 (1994).

    Article  ADS  Google Scholar 

  23. Holt, G. & Gaitan, F. Observation of stability boundaries in the parameter space of single bubble sonoluminescence. Phys. Rev. Lett. 77, 3791–3794 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Prosperetti, A. & Hao, Y. Modeling of spherical gas bubble oscillations and sonoluminescence. Phil. Trans. R. Soc. Lond. 357 , 203–224 (1999).

    Article  ADS  CAS  Google Scholar 

Download references


We thank S. Koehler, W. Moss and H. Stone for discussions. Support by the DFG and partial support by the NSF is acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Detlef Lohse.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilgenfeldt, S., Grossmann, S. & Lohse, D. A simple explanation of light emission in sonoluminescence. Nature 398, 402–405 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing